Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) hệ số a=-2=>y luôn nghịch biến
b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến
c) hàm y có dạng y=a/(x+1)
a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc
=>
(-3;-2) hàm y đồng biến
(2;3) hàm y đồng biến
a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).
Câu 1 :
\(y=-\left(m^2+1\right)x+m-4\)
Để hàm số nghịch biến trên R
⇔ a < 0
⇔ \(-\left(m^2+1\right)\)< 0
⇔ \(m^2+1\) > 0
⇔ \(m^2\) > -1 ∀x ∈ R
⇔ m ∈ R
Vậy với mọi giá trị của m thì hàm số nghịch biến trên R
Câu 2 :
Gọi (d) : y =ax+b
Vì (d) cắt trục hoành tại điểm x = 3
nên (d) sẽ cắt điểm A(3;0)
A(3;0) ∈ (d) ⇔ 0 = 3a +b
Mà M(-2;4) ∈ (d) ⇔ 4 = -2a +b
Ta có : \(\left\{{}\begin{matrix}3a+b=0\\-2a+b=4\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-4}{5}\\b=\dfrac{12}{5}\end{matrix}\right.\)
Vậy a=\(\dfrac{-4}{5}\) và b= \(\dfrac{12}{5}\)
Câu 3 :
(d) : \(y=2x+m+1\)
a) Vì (d) cắt trục hoành tại điểm có hoành độ bằng 3
nên (d) sẽ cắt điểm A(3;0)
A(3;0) ∈ (d) ⇔ 0 = 2 .3 + m+1⇔ m= -7
Vậy m = -7
b) Vì (d) cắt trục tung tại điểm có tung độ bằng -2
nên (d) sẽ cắt điểm B( 0;-2)
B( 0;-2) ∈ (d) ⇔ -2 = 0.2+m+1 ⇔ m = -3
Vậy m = -3
a/ ĐKXĐ: \(x\ne-1\)
Giả sử x1> x2
\(\Rightarrow f\left(x_1\right)=\frac{x_1}{x_1+1};f\left(x_2\right)=\frac{x_2}{x_2+1}\)
Có \(f\left(x_1\right)-f\left(x_2\right)=\frac{x_1}{x_1+1}-\frac{x_2}{x_2+1}\)
\(=\frac{x_1x_2+x_1-x_1x_2-x_2}{\left(x_1+1\right)\left(x_2+2\right)}=\frac{x_1-x_2}{\left(x_1+1\right)\left(x_2+1\right)}\)
Xét trên khoảng \(\left(-\infty;1\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+1>0\\x_2+1>0\end{matrix}\right.\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)
Có \(x_1>x_2\Rightarrow x_1-x_2>0\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)
=> hàm số đồng biến trên \(\left(-\infty;1\right)\)
làm tương tự trên khoảng \(\left(-1;+\infty\right)\)
b/ \(ĐKXĐ:x\ne2\)
Giả sử x1> x2
\(f\left(x_1\right)-f\left(x_2\right)=\frac{2x_1+3}{2-x_1}-\frac{2x_2+3}{2-x_2}\)
\(=\frac{4x_1-2x_1x_2+6-3x_2-4x_2+2x_1x_2-6+3x_1}{\left(2-x_1\right)\left(2-x_2\right)}\)
\(=\frac{7x_1-7x_2}{\left(2-x_1\right)\left(2-x_2\right)}\)
Xét trên khoảng \(\left(-\infty;2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}2-x_1>0\\2-x_2>0\end{matrix}\right.\Rightarrow\left(2-x_1\right)\left(2-x_2\right)>0\)
Có \(x_1>x_2\Rightarrow7x_1-7x_2>0\)
\(\Rightarrow f\left(x_1\right)-f\left(x_2\right)>0\)
=> hàm số đồng biến trên \(\left(-\infty;2\right)\)
làm tương tự trên \(\left(2;+\infty\right)\)
c/ Có \(-\frac{b}{2a}=-1\)
Mà a=1>0 => hàm số đồng biến trên \(\left(-1;+\infty\right)\) , nghịch biến trên \(\left(-\infty;-1\right)\)
d/ \(-\frac{b}{2a}=1\)
Mà a= -1>0 => hàm số đồng biến trên \(\left(-\infty;1\right)\) , nghịch biến trên \(\left(1;+\infty\right)\)
1.
a, Lấy \(x_1;x_2\in\left(1;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=x_1^2-x^2_2+2mx_1-2mx_2=\left(x_1-x_2\right)\left(x_1+x_2+2m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=x_1+x_2+2m\)
Hàm số đồng biến trên \(\left(1;+\infty\right)\) khi \(I>0\Leftrightarrow x_1+x_2+2m>0\)
Do \(x_1;x_2\in\left(1;+\infty\right)\Rightarrow x_1+x_2>2\Rightarrow2m\ge-2\Leftrightarrow m\ge-1\)
b, Lấy \(x_1;x_2\in\left(2;+\infty\right)\left(x_1\ne x_2\right)\)
\(\Rightarrow y_1-y_2=-x_1^2+x^2_2-4mx_1+4mx_2=\left(x_1-x_2\right)\left(-x_1-x_2-4m\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-x_1-x_2-4m\)
Hàm số nghịch biến trên \(\left(2;+\infty\right)\) khi \(I< 0\Leftrightarrow-x_1-x_2-4m< 0\)
Do \(x_1;x_2\in\left(2;+\infty\right)\Rightarrow-x_1-x_2< 4\Rightarrow-4m\le-4\Leftrightarrow m\ge1\)
2.
a, \(f\left(0\right)=m-5;f\left(3\right)=m-8;f\left(1\right)=m-4\)
\(Minf\left(x\right)=\left\{f\left(0\right);f\left(3\right);f\left(1\right)\right\}=m-8=4\)
\(\Rightarrow m=12\)
Hàm số \(y=-f\left(x\right)\) đồng biến trên khoảng \(\left(a;b\right)\)
Xét hai số thực \(a;b\) bất kì thỏa mãn \(a>b>1\)
\(f\left(a\right)-f\left(b\right)=a+\frac{1}{a}-\left(b+\frac{1}{b}\right)=a-b+\frac{1}{a}-\frac{1}{b}\)
\(=a-b-\frac{a-b}{ab}=\left(a-b\right)\left(1-\frac{1}{ab}\right)\)
Do \(a>b>1\Rightarrow\left\{{}\begin{matrix}a-b>0\\ab>1\Rightarrow\frac{1}{ab}< 1\Rightarrow1-\frac{1}{ab}>0\end{matrix}\right.\)
\(\Rightarrow f\left(a\right)-f\left(b\right)>0\Rightarrow f\left(a\right)>f\left(b\right)\)
Vậy hàm đồng biến trên \(\left(1;+\infty\right)\)
A. Đây là hàm số bậc nhất. a= -3 < 0 nên => Ngịch biến
a)
y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2
y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3
Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\) \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).
Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).
b)
I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).
y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)
Vậy: \(y=-x^2-4x-3\).
c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).
Từ giả thiết ta có:
\(\left\{{}\begin{matrix}a< 0\\\dfrac{4ab-4}{4a}=4\\-\dfrac{1}{a}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=3\end{matrix}\right.\)
\(\Rightarrow\) (P) cắt Oy tại điểm có tung độ bằng 3
Tuyệt vời quá anh Lâm ơi~