Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=x2+2y2+2xy+2x-4y+2013
=x2+y2+1+2xy+2x+2y+y2-6y+9+2003
=(x+y+1)2+(y-3)2+2003
Min A=2003 tại x=-4;y=3
A= (X2+2XY+Y2) + 2(X+Y)+1+Y2-6Y+9+2003
A=(X+Y)2+ 2(X+Y)+1+(Y-3)2+2003
A=(X+Y+1)2+(Y-3)2+2003
=> A>=2003
(DẤU "=" XẢY RA KHI X=-4;Y=3)
Ta có
\(A=x^2+2y^2+2xy-2x-8y+2017\)
\(=\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1+\left(y^2-6y+9\right)+2007\)
\(=\left(x+y\right)^2-2\left(x+y\right)+1+\left(y-3\right)^2+2007\)
\(=\left(x+y-1\right)^2+\left(y-3\right)^2+2007\ge2007\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
\(P=x^2+2y^2+2xy-6x-4y+13\)
\(=\left(x^2+2xy+y^2\right)+y^2-6\left(x+y\right)+2y+13\)
\(=\left(x+y\right)^2-2\left(x+y\right)3+9+y^2+2y+1+3\)
\(=\left(x+y-3\right)^2+\left(y+1\right)^2+3\)
Mà \(\left(x+y-3\right)^2\ge0\forall x;y\)
\(\left(y+1\right)^2\ge0\forall y\)
\(\Rightarrow P\ge3\forall x;y\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Vậy \(P_{Min}=3\Leftrightarrow\left(x;y\right)=\left(4;-1\right)\)
Ta có: P = x2 + 2y2 + 2xy - 6x -4y +13
= (x2 + y2 + 9 + 2xy - 6x - 6y) + (y2 + 2y + 1) + 3
= (x + y - 3)2 + (y + 1)2 + 3
Ta thấy (x + y - 3)2 ≥ 0 với mọi x,y
(y + 1)2 ≥ 0 với mọi x,y
⇔ (x + y - 3)2 + (y + 1)2 ≥ 0 với mọi x,y
⇔ (x + y - 3)2 + (y + 1)2 +3 ≥ 3 với mọi x,y
hay P ≥ 3 với mọi x,y
Dấu "=" xảy ra
⇔ \(\left\{{}\begin{matrix}x+y-3=0\\y+1=0\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x+y-3=0\\y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x-1-3=0\\y=-1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
Vậy GTNN của biểu thức P là 3 khi x=4 và y=-1.
2C=4x^2+2x-10=((2x)^2+4x\(\dfrac{1}{2}\)+\(\dfrac{1}{4}\))-\(\dfrac{41}{4}\)
=\(\left(2x+\dfrac{1}{2}\right)^2\)-41/4\(\ge\dfrac{-41}{4}\)
=> C\(\ge\dfrac{-41}{8}\)
Vậy min C = \(\dfrac{-41}{8}\)khi x=\(\dfrac{-1}{4}\)
\(4A=4x^2+44y^2+24xy-8y+20=\left(2x\right)^2+2.2x.6y+\left(6y\right)^2+8y^2-8y+20=\left(2x+6y\right)^2+2\left(4y^2-4y+1\right)+18=\left(2x+6y\right)^2+2\left(2y-1\right)^2+18\ge18\)
Bạn ko hiểu về BĐT
\n\nĐể chứng minh 1 đề bài sai, bạn chỉ cần lấy 1 phản ví dụ là đủ
\n\(A=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(y^2-6y+9\right)+2006\)\(=\left(x+y\right)^2+2\left(x+y\right)+1+\left(y-3\right)^2+2006\)
\(=\left(x+y+1\right)^2+\left(y-3\right)^2+2006\)
Ta có: \(\left(x+y+1\right)^2+\left(y-3\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow A\ge2006\).
Vậy MIN A = 2006 \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
Lời giải:
$A=x^2+2x+2xy+2y^2+4y+2021$
$=(x^2+2xy+y^2)+2x+y^2+4y+2021$
$=(x+y)^2+2(x+y)+1+(y^2+2y+1)+2019$
$=(x+y+1)^2+(y+1)^2+2019\geq 2019$
Vậy $A_{\min}=2019$ khi $x+y+1=y+1=0$
$\Leftrightarrow (x,y)=(0,-1)$