K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Chia cả 2 vế của giả thiết cho a,b,c ta được : 

\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow\left(x;y;z\right)\leftrightarrow\)khi đó bài toán trở thành :

\(xy+yz+zx+x+y+z=6\)

Chứng minh rằng \(x^2+y^2+z^2\ge3\)

Sử dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}< =>x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)(*)

Tiếp tục sử dụng AM-GM ta có : 

\(\hept{\begin{cases}x^2+y^2\ge2\sqrt{x^2y^2}=2xy\\y^2+z^2\ge2\sqrt{y^2z^2}=2yz\\z^2+x^2=2\sqrt{z^2x^2}=2zx\end{cases}< =>2\left(x^2+y^2+z^2\right)\ge}2\left(xy+yz+zx\right)\)(**)

Cộng theo vế bất đẳng thức (*) và (**) ta được : 

\(3\left(x^2+y^2+z^2+1\right)\ge2\left(xy+yz+zx+x+y+z\right)=2.6=12\) 

\(< =>x^2+y^2+z^2+1\ge\frac{12}{3}=4< =>x^2+y^2+z^2\ge3\left(đpcm\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1< =>a=b=c=1\)

21 tháng 1 2019

\(a+b+c=\frac{3}{2}\Rightarrow\left(a+b+c\right)^2=\frac{9}{4}\)

hay \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=\frac{9}{4}\)

Suy ra \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)

Ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (tự c/m,không làm được ib)

Ta có: \(a^2+b^2+c^2=\frac{9}{4}-2\left(ab+bc+ca\right)\)

\(\ge\frac{9}{4}-2.\frac{\left(a+b+c\right)^2}{3}=\frac{9}{4}-2.\frac{\left(\frac{9}{4}\right)}{3}=\frac{3}{4}^{\left(đpcm\right)}\)

Easy!

21 tháng 1 2019

Ta có: \(\left(a-\frac{1}{2}\right)^2\ge0\Leftrightarrow a^2+\frac{1}{4}\ge a\)

Tương tự: \(b^2+\frac{1}{4}\ge b;c^2+\frac{1}{4}\ge c\)

Cộng 3 bđt vế theo vế ta được:

\(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c=\frac{3}{2}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" xảy ra <=> a=b=c=1/2

21 tháng 3 2016

Ta có (a+b+c)2= a2+b2+c2+2ab+2bc+2ca>a2+b2+c2

=> đpcm

Mình chỉ hướng dẫn thôi bạn tự làm nhá

19 tháng 6 2018

\(\left(a^2+b^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)

\(\Leftrightarrow1+\frac{a^2}{b^2}+\frac{b^2}{a^2}+1-4\ge0\)

\(\Leftrightarrow\frac{a^4+b^4-2a^2b^2}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{\left(a^2-b^2\right)^2}{a^2b^2}\ge0\) (luôn đúng)

Vậy...

6 tháng 7 2015

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\frac{a+b+c}{abc}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\left(a+b+c=0\right)\)

=> điều phải cm

23 tháng 4 2019

giả sử bất đẳng thức đã cho đúng khi đó\(\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{2^2}\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b^{ }\right)^2\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+2ab+b^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bất đẳng thức cuối luôn đúng với mọi a, b nên bất đảng thức đầu đúng => đpcm