\(a.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\right).100-\left[...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

a, \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]=178\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\) \(=-88\)

\(x+\dfrac{206}{100}=\dfrac{-5}{176}\)

\(x=\dfrac{-5}{176}-\dfrac{206}{100}\)

\(x=\dfrac{-9198}{4400}\)

14 tháng 8 2017

a) \(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=90-89\)

\(\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(x+\dfrac{206}{100}=5\)

\(x=5-\dfrac{206}{100}\)

\(x=\dfrac{147}{50}\)

Vậy \(x=\dfrac{147}{50}\)

21 tháng 3 2017

a, đặt đề bài là A

Ta có : A=( 1-1/2+1/2-1/3+...+1/9-1/10).(x-1)+1/10.x=x-9/10

= (1-1/10).(x-1)+1/10.x

= 9/10 .( x-1 )+1/10.x

=1.x-9/10

nên x= 0 hoặc 1

21 tháng 3 2017

với -1 nữa nha

18 tháng 3 2018

|2x - 1|.\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{1996.1997}\right)\)= 1996

|2x - 1|.\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1996}-\dfrac{1}{1997}\right)\)= 1996

|2x - 1|.\(\left(1-\dfrac{1}{1997}\right)\)= 1996

|2x - 1|. \(\dfrac{1996}{1997}\)= 1996

|2x - 1| = 1996 : \(\dfrac{1996}{1997}\)

|2x - 1| = 1996 . \(\dfrac{1997}{1996}\)

|2x - 1| = 1997

2x - 1 = ± 1997

TH1:

2x -1 = 1997

2x = 1997 +1

2x= 1998

x= 1998:2

x=999

TH2:

2x-1= -1997

2x= -1997+1

2x= -1996

x= -1996:2

x= -998

Vậy x {999; -998}

18 tháng 3 2018

Phân phối phép nhân với phép cộng: v

6 tháng 5 2017

tự xử đi

6 tháng 5 2017

mk ăn mày lun ak

11: \(=\left(1+\dfrac{1}{98}-1-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{98}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}\right)=0\)

12: \(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\left(\dfrac{-6+5}{10}\right)^2\)

\(=\dfrac{7}{17}+\dfrac{10}{17}\cdot\dfrac{1}{100}=\dfrac{7}{17}+\dfrac{1}{170}=\dfrac{71}{170}\)

14 tháng 6 2018

\(\Rightarrow\left(1+1+...+1\right)+2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{n\left(n+1\right)}\right)\)[có (n-1) số 1]

\(\Rightarrow\left(n-1\right)+2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\left(n-1\right)+2\left(\dfrac{1}{2}-\dfrac{1}{n+1}\right)\)

\(\Rightarrow\left(n-1\right)+\left(1-\dfrac{2}{n+1}\right)\)

\(\Rightarrow n-\dfrac{2}{n+1}\)

\(\Rightarrow\dfrac{n\left(n+1\right)}{n+1}-\dfrac{2}{n+1}\)

\(\Rightarrow\dfrac{n^2+n-2}{n+1}\)

9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)

10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)

25 tháng 7 2017

\(a,\dfrac{3}{4}-1\dfrac{1}{2}+0,5:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{3}{2}+\dfrac{1}{2}:\dfrac{5}{12}.\)

\(=\dfrac{3}{4}-\dfrac{6}{4}+\dfrac{1}{2}.\dfrac{12}{5}.\)

\(=-\dfrac{3}{4}+\dfrac{12}{10}.\)

\(=-\dfrac{3}{4}+\dfrac{6}{5}.\)

\(=-\dfrac{15}{20}+\dfrac{24}{20}=\dfrac{9}{20}.\)

Vậy.....

\(b,\left(-2\right)^2-1\dfrac{5}{27}.\left(-\dfrac{3}{2}\right)^3.\)

\(=4-1\dfrac{5}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\dfrac{32}{27}.\left(-\dfrac{27}{8}\right).\)

\(=4-\left(-4\right).\)

\(=4+4=8.\)

Vậy.....

\(c,\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{1}{4}-\dfrac{1}{4}\right)+...+\left(\dfrac{1}{99}-\dfrac{1}{99}\right)-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}+0+0+...+0-\dfrac{1}{100}.\)

\(=\dfrac{1}{2}-\dfrac{1}{100}.\)

\(=\dfrac{50}{100}-\dfrac{1}{100}=\dfrac{49}{100}.\)

Vậy.....