Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/5*A=3/(18*21)+3/(21*24)+3/(24*27)+...+3/(123*126)
=>3/5*A=1/18-1/21+1/21-1/24+1/24-1/27+...+1/123-1/126
=>3/5*A=1/18-1/126
=>3/5*A=1/21
=>A=5/63
A=\(\frac{5}{3}\left(\frac{3}{18.21}+\frac{3}{21.24}+..........+\frac{3}{123.126}\right)\)
A=\(\frac{5}{3}\left(\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+............+\frac{1}{123}-\frac{1}{126}\right)\)
=\(\frac{5}{3}.\left(\frac{1}{18}-\frac{1}{126}\right)\)
=\(\frac{5}{3}.\frac{1}{21}\)
=\(\frac{5}{63}\)
\(A=\frac{5}{18.21}+\frac{5}{21.24}+\frac{5}{24.27}+...+\frac{5}{123.126}\)
\(A=\frac{5}{3}\left(\frac{3}{18.21}+\frac{3}{21.24}+\frac{3}{24.27}+...+\frac{3}{123.126}\right)\)
\(A=\frac{5}{3}\left(\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+\frac{1}{24}-\frac{1}{27}+...+\frac{1}{123}-\frac{1}{126}\right)\)
\(A=\frac{5}{3}\left(\frac{1}{18}-\frac{1}{126}\right)\)
\(A=\frac{5}{3}.\frac{1}{21}\)
\(A=\frac{5}{63}\)
D=\(\frac{6}{15.18}\)+\(\frac{6}{18.21}\)+...+\(\frac{6}{87.90}\)
D=2.\(\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
D=2.\(\frac{1}{18}\)
D=\(\frac{1}{9}\)
Vậy D=\(^{\frac{1}{9}}\)
\(D=\frac{6}{15.18}+\frac{6}{18.21}+\frac{6}{21.24}+...+\frac{6}{87.90}\)
\(D=2.\left(\frac{3}{15.18}+\frac{3}{18.21}+\frac{3}{21.24}+...+\frac{3}{87.90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{1}{15}-\frac{1}{90}\right)\)
\(D=2.\left(\frac{6}{90}-\frac{1}{90}\right)\)
\(D=2.\frac{1}{18}\)
\(D=\frac{1}{9}\)
\(A=\dfrac{25}{18\cdot21}+\dfrac{25}{21\cdot24}+\dfrac{25}{24\cdot27}+...+\dfrac{25}{123\cdot126}\)
\(=25\left(\dfrac{1}{18\cdot21}+\dfrac{1}{21\cdot24}+\dfrac{1}{24\cdot27}+...+\dfrac{1}{123\cdot126}\right)\)
\(=\dfrac{25}{3}\left(\dfrac{3}{18\cdot21}+\dfrac{3}{21\cdot24}+\dfrac{3}{24\cdot27}+...+\dfrac{3}{123\cdot126}\right)\)
\(=\dfrac{25}{3}\left(\dfrac{1}{18}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{24}+...+\dfrac{1}{123}-\dfrac{1}{126}\right)\)
\(=\dfrac{25}{3}\left(\dfrac{1}{18}-\dfrac{1}{126}\right)\)\(=\dfrac{25}{3}\cdot\dfrac{1}{21}=\dfrac{25}{63}\)
A= \(\dfrac{25}{18}-\dfrac{25}{21}+\dfrac{25}{21}-\dfrac{25}{24}+...+\dfrac{25}{123}-\dfrac{25}{126}\)
A= \(\dfrac{25}{18}-\dfrac{25}{126}\)
A= \(\dfrac{25}{21}\)
Hoặc ngay dòng 2 bạn làm như thế này cũng được: \(25.\left(\dfrac{1}{18}-\dfrac{1}{21}+...+\dfrac{1}{123}-\dfrac{1}{126}\right)\)
1,
\(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}...\dfrac{899}{30^2}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}....\dfrac{29\cdot31}{30\cdot30}\\ =\left(\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot....\cdot30}\right)\cdot\left(\dfrac{3\cdot4\cdot5\cdot....\cdot31}{2\cdot3\cdot4.....\cdot30}\right)\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)
2,
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{37\cdot38\cdot39}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{37\cdot38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\dfrac{1}{3\cdot4}-\dfrac{1}{4\cdot5}+....+\dfrac{1}{37\cdot38}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{38\cdot39}\right)\\ =\dfrac{1}{4}-\dfrac{1}{3964}\\ =\dfrac{185}{741}\)
3, Làm tương tự, áp dụng ; \(\dfrac{n}{x\left(x+n\right)}=\dfrac{1}{x}-\dfrac{1}{x+n}\)
Mình nói lí thuyết cho nghe:
Với phân số \(\frac{a-b}{a.b}\)\(\left(VD:\frac{1}{1.2};\frac{1}{2.3};\frac{1}{2015.2016};\frac{3}{15.18};\frac{3}{18.21};\frac{1}{10.11};\frac{1}{11.12};...\right)\)thì:
\(\frac{b-a}{a.b}=\frac{b}{a.b}-\frac{a}{a.b}=\frac{1}{a}-\frac{1}{b}\left(VD:\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{3}{15.18}=\frac{1}{15}-\frac{1}{18}\right)\)
ÁP dụng để tính:
c) \(\Rightarrow\frac{1}{4}C=\frac{1}{4}\left(\frac{12}{15.18}+\frac{12}{18.21}+...+\frac{12}{87.90}\right)=\frac{3}{15.18}+\frac{3}{18.21}+....+\frac{3}{87.90}\)
\(\Rightarrow\frac{1}{4}C=\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}=\frac{1}{15}-\frac{1}{90}\)
=> \(C=\left(\frac{1}{15}-\frac{1}{90}\right).4\)
a,\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(A=1-\frac{1}{2016}\)suy ra \(A=\frac{2015}{2016}\)
b, \(B=5\left(\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{69.70}\right)\)
\(B=5\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(B=5\left(\frac{1}{10}-\frac{1}{70}\right)\)suy ra \(B=5.\frac{3}{35}\)
\(B=\frac{3}{7}\)
c,\(C=4.\left(\frac{3}{15.18}+\frac{3}{18.21}+...+\frac{3}{87.90}\right)\)
\(C=4.\left(\frac{1}{15}-\frac{1}{18}+\frac{1}{18}-\frac{1}{21}+...+\frac{1}{87}-\frac{1}{90}\right)\)
\(C=4.\left(\frac{1}{15}-\frac{1}{90}\right)\)suy ra \(C=4.\frac{1}{18}\)
\(C=\frac{2}{9}\)
a,A=\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{23.24}\)
A=\(\frac{1}{2}+\frac{2}{1}-\frac{1}{3}+\frac{3}{1}-\frac{1}{4}+......\frac{23}{1}-\frac{1}{24}\)
A=\(\frac{1}{2}-\frac{1}{24}\)
A=\(\frac{11}{24}\)
A= \(\frac{5}{3}\)(\(\frac{3}{18.21}+\frac{3}{21.24}+\frac{3}{24.27}+...\frac{3}{123.126}\)
A=\(\frac{5}{3}\)(\(\frac{1}{18}-\frac{1}{126}\))
A=\(\frac{5}{3}.\frac{1}{21}\)
A=\(\frac{5}{63}\)
\(A=\frac{5}{18.21}+\frac{5}{21.24}+\frac{5}{24.27}+...+\frac{4}{123.126}\)
\(=\frac{5}{3}.\left(\frac{3}{18.21}+\frac{3}{21.24}+\frac{3}{24.27}+...+\frac{3}{123.126}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{18}-\frac{1}{21}+\frac{1}{21}-\frac{1}{24}+...+\frac{1}{123}-\frac{1}{126}\right)\)
\(=\frac{5}{3}.\left(\frac{1}{18}-\frac{1}{126}\right)\)
\(=\frac{5}{3}.\frac{1}{21}\)
\(=\frac{5}{63}\)