Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A đúng
\(\overline{A}:\exists x\in R,x^2< 0\)
b/ B đúng
\(\overline{B}:\forall x\in N,x\) ko phải là số nguyên tố
c/ C sai
\(\overline{C}:\forall x\in N,x⋮̸\) \(x+1\)
d/ D đúng
\(\overline{D}:\exists x\in N,n^4-n^2+1\) là số nguyên tố
e/ E sai
\(\overline{E}\) : mọi hình thang ko là hình vuông
f/ F đúng
\(\overline{F}:∄\)\(a\in R,a+1+\frac{1}{a+1}>2\)
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) ∃x ∈ Q: x2=2;= “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.
c) ∀x ∈ R: x< x+1; = ∃x ∈ R: x≥x+1= “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.
d) ∃x ∈ R: 3x=x2+1; = ∀x ∈ R: 3x ≠ x2+1= “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”
Đây là mệnh đề sai
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
Xem thêm tại: http://loigiaihay.com/bai-7-trang-10-sgk-dai-so-10-c45a4787.html#ixzz45gTdKfVY
a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.
b) = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.
c) = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.
d) = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"
Đây là mệnh đề sai vì với x= ta có :
3 =+1
a) \(\left(P\Rightarrow Q\right):\)"Nếu \(x^2=1\) thì \(x=1\)". Mệnh để đảo là "Nếu \(x=1\) thì \(x^2=1\)"
b) Mệnh đề đảo "Nếu \(x=1\) thì \(x^2=1\) là đúng
c) Với \(x=-1\) thì mệnh đề \(\left(P\Rightarrow Q\right):\)sai
đề có sai o bn
đề phải là : xét tính đúng sai của mệnh đề và lập mệnh đề phủ định của nó.
∀n∈N; n2 + 1 không chia hết cho 4 mới đúng chứ .
Mệnh đề sau sai
Vì khi x = 1 thì :
VT = \(\frac{1^2-1}{1-1}=\frac{0}{0}\) ( không có phép chia cho 0 )
Phủ định của mệnh đề :
\(\forall x\in R\backslash\left\{1\right\};\frac{x^2-1}{x-1}=x+1\) là mệnh đề đúng
Mọi người chứng minh ra giúp mình với ạ