Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B
Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)
Cộng vế theo vế, ta có :
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Giải:
Ta có:
\(P=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
và \(Q=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Vì \(\left\{{}\begin{matrix}\dfrac{2016}{2017}=\dfrac{2016}{2017}\\\dfrac{2017}{2018}=\dfrac{2017}{2018}\\\dfrac{2018}{2019}=\dfrac{2018}{2019}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}=\dfrac{2016}{2017}+\dfrac{2017}{2018}+\dfrac{2018}{2019}\)
Hay \(P=Q\)
Vậy ...
có B=2015+2016+\(\frac{2017}{2016}\)+2017+2018
B=\(\frac{2015}{2015+2016+2017}\)+\(\frac{2016}{2016+2017+2018}\)+\(\frac{2017}{2016+2017+2018}\)
vì \(\frac{2015}{2016}\)>\(\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}\)>\(\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}\)>\(\frac{2017}{2016+2017+2018}\)
⇒A>B
Chúc bạn học tốt :")
Dễ thấy B<1.
\(A=\left(1-\frac{1}{2016}\right)+\left(1-\frac{1}{2017}\right)+\left(1-\frac{1}{2018}\right)\)\(=3-\left(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}\right)\)
\(\frac{1}{2016}+\frac{1}{2017}+\frac{1}{2018}< \frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vậy A>2.
Vậy A>B.
\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\)\(\frac{2017}{2016+2017+2018}\)
ta có :
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
nên \(P>Q\)
Q=2015+2016+2017/2016+2017+2018=+2018+2016/2016+2017+2018+2017/2016+2017+2018
vì 2015/2016>2015/2016+2017+2018[1]
2016/2017>2016+2017+2018[2]
2017/2018>2016+2017+2018[3]
từ [1] [2] [3] suy ra P>Q
giả sử 2015^2016+2016^2017+2017^2018+2018^2019 là số chính phương
mà 2015^2016+2016^2017+2017^2018+2018^2019 là số chẵn=>2015^2016+2016^2017+2017^2018+2018^2019chia hết cho 4
ta có 2015^2016 ≡ (-1)^2016 (mod 4); 2016^2017 chia hết cho 4; 2017^2018 ≡ 1^2018 (mod 4); 2018^2019 ≡ 2^2019
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ (-1)^2016+1^2018+2^2019 (mod 4)
<=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 1+1+2^2019(mod 4)
ta có 2^2019=4x2^2017 chia hết cho 4
=>2015^2016+2016^2017+2017^2018+2018^2019 ≡ 2 (mod 4) vô lí
=> điều giả sử sai
=>ĐPCM