\(1/ Cho P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}.\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2018

1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)

\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)

\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)

\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)

\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)

\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2024

Lời giải:

$\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}$

$< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}$

$=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{100}$
$=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}$

28 tháng 2 2018

a) A= 1/2010+1+2/2009+1+3/2008+1+...+2009/2+1+1

  = 2011/2010+20011/2009+2011/2008+...+2011/2+2011/2011

  = 2011(1/2+1/3+1/4+...+1/2011)

Ta có: B= 1/2+1/3+1/4+...+1/2011

suy ra A/B= 2011

13 tháng 3 2018

=1/2010

9 tháng 7 2019

\(1,\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=\frac{12}{15}+\frac{12}{35}+\frac{12}{63}+\frac{12}{99}=6\left(\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=6\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\Rightarrow\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}=6\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.....-\frac{1}{11}\right)=6\left(\frac{1}{3}-\frac{1}{11}\right)=\frac{48}{33}=\frac{16}{11}\)

\(2,\left(x+1\right)+\left(x+2\right)+.....+\left(x+211\right)=211x+\left(1+2+....+211\right)=211x+\frac{212.211}{2}=211x+22366=23632\Leftrightarrow211x=23632-22366=1266\Leftrightarrow x=6\)

9 tháng 7 2019

a, \(14:\left(4\frac{2}{3}:1\frac{5}{9}\right)+14:\left(\frac{2}{3}+\frac{8}{9}\right)\)

=> \(14:\frac{28}{9}+14:\frac{14}{9}=>14.\frac{9}{28}+14.\frac{9}{14}\)

=> 14. ( \(\frac{9}{28}+\frac{9}{14}\) )

=> \(14.\frac{27}{28}=\frac{419}{28}\)

b, \(\frac{1212}{1515}+\frac{1212}{3535}+\frac{1212}{6363}+\frac{1212}{9999}\)

=> \(\frac{4}{5}+\frac{12}{35}+\frac{4}{21}+\frac{4}{33}\)

=> \(\frac{8}{7}+\frac{24}{77}=\frac{16}{11}\)

bài 2 :

( x + 1 ) + ( x + 2 ) + ... + ( x + 211 ) = 23632

=> ( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 211 ) = 23632

=> 211x + 22366 = 23632

=> 211x = 23632 - 22366

=> 211x = 1266

=> x = 1266 : 211

x = 6

12 tháng 7 2020

ta có :B= \(\frac{2008^2+2009^2}{2009^2+2010^2}=\frac{2008^2}{2009^2+2010^2}+\frac{2009^2}{2009^2+2010^2}\)

Ta có : \(\frac{2008^2}{2009^2}>\frac{2008^2}{2009^2+2010^2}\) 

            \(\frac{2009^2}{2010^2}>\frac{2009^2}{2009^2+2010^2}\)

=> \(\frac{2008^2}{2009^2}+\frac{2009^2}{2010^2}>\frac{2008^2}{2009^2+2010^2}+\frac{2009^2}{2009^2+2010^2}=\frac{2008^2+2009^2}{2009^2+2010^2}\)

=> A>B

2.A=\(\dfrac{43.11}{2011^{2013}}\)+\(\dfrac{79}{2011^{2013}}\)=\(\dfrac{43.11+79}{2011^{2013}}\)

B=\(\dfrac{79.11}{2011^{2013}}\)+\(\dfrac{43}{2011^{2013}}\)=\(\dfrac{79.11+43}{2011^{2013}}\)

Ta có: 43.11+79=43.(10+1)+79=43.10+43+79=430+122

79.11+43=79.(10+1)+43=79.10+79+43=790+122

Vì 430+122<790+122 nên 43.11+79<79.11+43 (1)

Mà 20112013<20112013 (2)

Từ (1) và (2) suy ra A<B

3. A=\(\dfrac{2010.2012}{2011.2011}\)

Vì B<1 nên B>\(\dfrac{2010}{2012}\)=\(\dfrac{2010.2012}{2012.2012}\)

Vì 2010.2012=2010.2012; 2011.2011<2012.2012 nên B>A

4. A=\(\dfrac{3n}{3\left(2n+1\right)}\)=\(\dfrac{3n}{6n+3}\)

Vì 6n+3=6n+3; 3n<3n+1 nên A<B

25 tháng 3 2019

(-6,17 +3+5/9-2-36/97)*(1/3-1/4-1/12)=(-6,17+3+5/9-2-36/97)*(4/12-3/12-1/12)=(-6,17+3+5/9-2-36/97)*0=0

a) \(\left(\frac{-1}{6}+\frac{5}{-12}\right)+\frac{7}{12}=\left(\frac{-2}{12}+\frac{-5}{12}\right)+\frac{7}{12}=\left(\frac{-7}{12}\right)+\frac{7}{12}=0\)

b)\(\frac{7}{36}-\frac{8}{-9}+\frac{-2}{3}=\frac{7}{36}+\frac{32}{36}-\frac{24}{36}=\frac{15}{36}=\frac{5}{12}\)

c) \(\frac{3}{5}-\frac{2}{5}.\frac{10}{12}=\frac{3}{5}-\frac{2}{5}.\frac{5}{6}=\frac{3}{5}-\frac{1}{3}=\frac{9}{15}-\frac{5}{15}=\frac{4}{15}\)

d) \(\frac{2}{\left(-3\right)^2}+\frac{5}{-13}-\frac{-3}{4}=\frac{2}{9}-\frac{5}{13}+\frac{3}{4}=\frac{8}{36}-\frac{15}{36}+\frac{27}{36}=\frac{5}{9}\)

28 tháng 2 2020

I'm sorry, I can't help you

12 tháng 6 2018

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)

\(=\frac{1.2.3.....19}{2.3.4.....20}\)

\(=\frac{1}{20}\)

12 tháng 6 2018

\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{20}\right)\)

\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)

\(B=\frac{1}{20}\)

Hok tốt