Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N I K
a) Ta có: MN // BC(gt) => \(\frac{AM}{AB}=\frac{AN}{AC}\)(theo định lí Ta - lét)
=> \(AN=\frac{AM}{AB}.AC=\frac{2,25}{6}\cdot8=3\)(cm)
=> \(CN=AC-AN=8-3=5\)
b) Ta có: MK // BI (gt) => \(\frac{MK}{BI}=\frac{AK}{AI}\)(theo định lí Ta - lét)
NK // IC (gt) => \(\frac{KN}{IC}=\frac{AK}{AI}\)(theo định lí Ta - lét)
=> \(\frac{MK}{BI}=\frac{KN}{IC}\) mà BI = IC (gt)
=> MK = KN => K là trung điểm của MN
c) Do BN là tia p/giác của góc ABC => \(\frac{AB}{BC}=\frac{AN}{NC}\)(t/c đường p/giác của t/giác)
=> \(BC=AB:\frac{AN}{NC}=6:\frac{3}{5}=10\)(cm)
Ta có: BC2 = 102 = 100
AB2 + AC2 = 62 + 82 = 100
=> BC2 = AB2 + AC2 => t/giác ABC vuông tại A (theo định lí Pi - ta - go đảo)
=> SABC = AB.AC/2 = 6.8/2 = 24 (cm2)
Hình bạn tự vẽ nhá
a) Ta có: MB = AB - AM = 6 - 2,25 = 3,75 (cm)
Gọi x là AN
NC là: 8 - x
Vì MN // BC, theo định lý Ta-lét ta có:
AMMB=ANNC⇔2,253,75=x8−x
⇔2,25(8−x)3,75(8−x)=3,75x3,75(8−x)
⇔2,25(8−x)=3,75x
⇔18−2,25x=3,75x
⇔−2,25x−3,75x=−18
⇔−6x=−18
⇔x=−18−6
⇔x=3
Nên NC = 8 - x = 8 - 3 = 5 (cm)
Vậy AN = 3cm, NC = 5cm
b) Ta có: MN // BC (gt) (1)
⇒ MK // BI, theo hệ quả của định lý Ta-lét ta có:
AKAI=MKBI (2)
Từ (1) ⇒ KN // IC, theo hệ quả của định lý Ta-lét ta có:
AKAI=KNIC (3)
Từ (2), (3) ⇒MKBI=KNIC(4)
Mà BI = IC (gt) (5)
Từ (4), (5) ⇒MK=KN
Nên K là trung điểm của MN
Câu 3: 3.5đ. Cho tam giác ABC có AB = 6cm, AC = 8 cm. TRên cạnh AB lấy điểm M sao cho AM = 2,25 cm. Qua M kẻ đường thẳng song song với BC cắt cạnh AC tại N
a) Tính độ dài các đoạn thẳng AN, CN.
b) Gọi I là trung điểm của BC, K là giao điểm của AI và MN. Chứng minh K là trung điểm của MN
. c) Nếu BN là tia phân gíac của góc ABC thì diện tích tam giác ABC là bao nhiêu?
a) Xét t/g ABD và t/g AED có:
AB = AE (gt)
BAD = EAD (gt)
AD là cạnh chung
Do đó, t/g ABD = t/g AED (c.g.c) (đpcm)
b) t/g ABD = t/g AED (câu a)
=> BD = ED (2 cạnh tương ứng)
ABD = AED (2 góc tương ứng)
Có: ABD + DBF = 180o( kề bù)
AED + DEC = 180o ( kề bù)
Nên DBF = DEC
Có: AF = AC (gt)
AB = AE (gt)
=> AF - AB = AC - AE
=> BF = CE
Xét t/g BDF và t/g EDC có:
BF = EC (cmt)
DBF = DEC (cmt)
BD = ED (cmt)
Do đó, t/g BDF = t/g EDC (c.g.c) (đpcm)
c) Gọi K là giao điểm của FC và DA ( kéo dài)
Dễ thấy, t/g AKF = t/g AKC (c.g.c)
=> AKF = AKC (2 góc tương ứng)
Mà AKF + AKC = 180o ( kề bù)
=> AKF = AKC = 90o
=> AK _|_ CF hay AD _|_ CF (đpcm)
Đáp án:
Giải thích các bước giải:
a, ta có tỉ lệ \(\frac{AM}{AB}\)= \(\frac{3}{3+2}\)= \(\frac{3}{5}\)
\(\frac{AN}{AC}\)= \(\frac{7,5}{7,5+5}\)= \(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)= \(\frac{AN}{AC}\)suy ra đpcm
b ) vì MN//BC nên \(\frac{MK}{BI}\)= \(\frac{NK}{CT}\)= \(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN