Cho (O;R) và (O';R') tiếp xúc nhau tại A. trên một nửa mặt phẳng bờ OO' vẽ các bán...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2024

a.

OB song song O'C \(\Rightarrow\widehat{BOA}+\widehat{CO'A}=180^0\) (hai góc trong cùng phía)

Do \(OA=OB=R\) và \(O'A=O'C=R'\) nên các tam giác OAB và O'AC cân tại O và O'

\(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\widehat{OBA}\\\widehat{O'AC}=\widehat{O'CA}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\widehat{OAB}=\dfrac{180^0-\widehat{BOA}}{2}\\\widehat{O'AC}=\dfrac{180^0-\widehat{CO'A}}{2}\end{matrix}\right.\) 

\(\Rightarrow\widehat{BAC}=180^0-\left(\widehat{OAB}+\widehat{O'AC}\right)=180^0-\left(\dfrac{180^0-\widehat{BOA}}{2}+\dfrac{180^0-\widehat{CO'A}}{2}\right)\)

\(=180^0-\left(180^0-\dfrac{\widehat{BOA}+\widehat{CO'A}}{2}\right)=90^0\)

\(\Rightarrow\Delta ABC\) vuông tại A

b.

TH1:

Nếu \(R=R'\) thì OBCO' là hình bình hành (cặp cạnh đối OB, O'C song song và bằng nhau)

\(\Rightarrow BC||O'O\Rightarrow AH\perp O'O\)

Từ B kẻ \(BK\perp O'O\Rightarrow AHBK\) là hình chữ nhật (tức giác có 3 góc vuông)

\(\Rightarrow AH=BK\le OB=R=R'\)

Dấu "=" xảy ra khi K trùng O hay BC vuông góc OB \(\Rightarrow BC\) là tiếp tuyến của (O)

TH2:

Nếu \(R\ne R'\), không mất tính tổng quát giả sử \(R>R'\)

Kéo dài BC và O'O cắt nhau tại D

Từ O kẻ \(OK\perp BC\)

Áp dụng định lý Talet: \(\dfrac{DO'}{DO}=\dfrac{OC'}{OB}=\dfrac{R'}{R}\)

OK và AH cùng vuông góc BC \(\Rightarrow OK||AH\)

Áp dụng định lý Thales:

\(\dfrac{AH}{OK}=\dfrac{DO'}{DO}=\dfrac{R'}{R}\Rightarrow AH=\dfrac{R'}{R}.OK\)

\(\Rightarrow AH_{max}\) khi \(OK_{max}\)

Mà \(OK\perp BC\Rightarrow OK\le OB\) (đường vuông góc ko lớn hơn đường xiên)

\(\Rightarrow OK_{max}=OB=R\)

\(\Rightarrow AH_{max}=\dfrac{R'}{R}.R=R'\)

Dấu "=" xảy ra khi K trùng B hay BC là tiếp tuyến của (O)

NV
20 tháng 1 2024

loading...

31 tháng 5 2017

a/ Ta có CF vuông góc AB tại F (gt) 

Nên góc CFB = 90 độ 

BE vuông góc AC tại E 

Nên góc BEC = 90 độ 

Tứ giác CEFB có hai đỉnh kề F và E cùng nhìn cạnh BC dưới một góc vuông . Do đó tứ giác CEFB nt 

Ta có góc BFC = 90(cmt) độ nên tam giác BFC vuông tại F .

góc BEC = 90 độ (cmt)

Nên tam giác BEC vuông tại E 

Tam giác vuông BFC và BEC đều có BC là cạnh huyền nên tâm của đường tròn ngoại tiếp tứ giác là trung điểm của cạnh BC .

22 tháng 3 2016

emmmm , mới hok lp 5 à , emmmmm ko biết làm bài này , sory

22 tháng 3 2016

ai fan mtp kết bạn nha

ai xem luật nhân quả thì kết bạn nha

chơi truy kích kết bạn nha

23 tháng 6 2017

Đường tròn

Đường tròn