Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Gọi E là trung điểm AC ; F là trung điểm BC
\(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{MA}+\overrightarrow{MC}\right)+2\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow2\overrightarrow{ME}+4\overrightarrow{MF}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{ME}+2\overrightarrow{MF}=\overrightarrow{0}\)
Điểm M nằm trên đoạn EF sao cho \(\frac{MF}{ME}=\frac{1}{2}\)
đề bài có phải là
a. \(\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
b. \(\overrightarrow{MA}+2\overrightarrow{MB}-4\overrightarrow{MC}=\overrightarrow{0}\)
Kẻ \(\overrightarrow{AH}=\overrightarrow{GC}\)
ΔABC đều có G là trọng tâm
nên G là tâm đường tròn nội tiếp ΔABC
=>AG,CG,BG lần lượt là phân giác của góc \(\widehat{BAC};\widehat{ACB};\widehat{ABC}\)
ΔABC đều
=>\(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}=60^0\)
AG là phân giác của góc BAC
=>\(\widehat{BAG}=\widehat{CAG}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot60^0=30^0\)
CG là phân giác của góc ACB
=>\(\widehat{ACG}=\widehat{BCG}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)
Xét ΔGAC có \(\widehat{AGC}+\widehat{GAC}+\widehat{GCA}=180^0\)
=>\(\widehat{AGC}+30^0+30^0=180^0\)
=>\(\widehat{AGC}=120^0\)
\(\overrightarrow{AH}=\overrightarrow{GC}\)
=>AH//GC và AH=GC
Xét tứ giác AHCG có
AH//CG
AH=CG
Do đó: AHCG là hình bình hành
=>\(\widehat{GAH}+\widehat{AGC}=180^0\)
=>\(\widehat{GAH}=180^0-120^0=60^0\)
ΔABC đều có G là trọng tâm
nên \(AG=CG=BG=\dfrac{a\sqrt{3}}{3}=\dfrac{2\sqrt{3}\cdot\sqrt{3}}{3}=2\)
\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{HA}=\overrightarrow{HB}\)
\(\widehat{BAH}=\widehat{BAG}+\widehat{GAH}=30^0+60^0=90^0\)
=>ΔABH vuông tại A
AH=CG
mà 2
nên AH=2
ΔABH vuông tại A
=>\(BH^2=AB^2+AH^2\)
=>\(BH^2=\left(2\sqrt{3}\right)^2+2^2=16\)
=>BH=4
=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{HB}\right|=HB=4\)