Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\dfrac{AM}{AB}=\dfrac{1.5}{6}=\dfrac{1}{4}\)
\(\dfrac{AN}{AC}=\dfrac{AC-CN}{AC}=\dfrac{4-3}{4}=\dfrac{1}{4}\)
Do đó: \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)
Xét ΔABC có
\(M\in AB\)(gt)
\(N\in AC\)(gt)
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(=\dfrac{1}{4}\right)\)(cmt)
Do đó: MN//BC(Định lí Ta lét đảo)
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN
a) MN // BC. Áp dụng định lí Ta-let, ta có :
\(\frac{BM}{AB}=\frac{CN}{AC}\)hay \(\frac{2}{8}=\frac{CN}{10}\)\(\Rightarrow CN=2,5\)
b) MN // BP ; NP // BM nên tứ giác MNPB là hình bình hành
\(\Rightarrow\Delta BMN=\Delta NPB\left(c.g.c\right)\)hay \(\Delta BMN\approx\Delta NPB\)
c) BM = 2 ; AB = 8 nên AM = 6
MNPB là hình bình hành nên NP = BM
Xét \(\Delta NPC\)và \(\Delta AMN\)có :
\(\widehat{PNC}=\widehat{MAN}\left(dv\right);\widehat{NPC}=\widehat{AMN}\left(=\widehat{ABC}\right)\)
\(\Rightarrow\)\(\Delta NPC\)\(\approx\)\(\Delta AMN\)( g.g )
\(\Rightarrow\)\(\frac{S_{NPC}}{S_{AMN}}=\left(\frac{NP}{AM}\right)^2=\left(\frac{BM}{AM}\right)^2=\left(\frac{2}{6}\right)^2=\frac{1}{9}\)
Đáp án:
Giải thích các bước giải:
a, ta có tỉ lệ \(\frac{AM}{AB}\)= \(\frac{3}{3+2}\)= \(\frac{3}{5}\)
\(\frac{AN}{AC}\)= \(\frac{7,5}{7,5+5}\)= \(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)= \(\frac{AN}{AC}\)suy ra đpcm
b ) vì MN//BC nên \(\frac{MK}{BI}\)= \(\frac{NK}{CT}\)= \(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN
A B C D E 1 2 1
Qua B kẻ đường thẳng song song cới AD và cắt tia CA tại E.
Ta có: ^A1=^B1 (So le trong); ^A2=^E (Đồng vị). Mà ^A1=^A2 => ^B1=^E
=> \(\Delta\)BAE cân tại A => AE=AB=2
Sử dụng định lí Ta-lét: \(\frac{AD}{EB}=\frac{AC}{EC}\Rightarrow\frac{1,2}{EB}=\frac{3}{AC+AE}\Rightarrow\frac{1,2}{EB}=\frac{3}{3+2}\Rightarrow\frac{1,2}{EB}=\frac{3}{5}\)
\(\Rightarrow EB=1,2:\frac{2}{5}=\frac{1,2.5}{3}=\frac{6}{3}=2\)\(\Rightarrow AE=AB=EB=2\)
\(\Rightarrow\Delta\)BAE đều \(\Rightarrow\widehat{BAE}=60^0\). Mà ^BAE kề bù với ^BAC
\(\Rightarrow\widehat{BAC}=120^0\).
A B C 4 6 M N P
a, giả sử MN // BC
theo đinh lí Ta lét ta có : \(\frac{AN}{NC}=\frac{AM}{MB}=\frac{1}{3}=\frac{1,5}{4,5}\)
Vậy MN // BC ( đpcm )
b, Xét tam giác AMN và tam giác ABC ta có :
^A chung
\(\frac{AN}{NC}=\frac{AM}{MB}\)( cmt )
Vậy tam giác AMN ~ tam giác ABC ( c.g.c ) (1)
Xét tam giác NPC và tam giác ABC ta có :
^C chung
\(\frac{NC}{NA}=\frac{CP}{PB}\)( PN // AB, theo định lí Ta lét )
Vậy tam giác NPC ~ tam giác ABC ( c.g.c ) (2)
Từ (1) ; (2) suy ra : tam giác AMN ~ tam giác NPC