Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do (MAB) chứa AB//CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N. khi đó MN là đường trung bình của tam giác SCD nên N là trung điểm của SD.
Đáp án B
Gọi M là trung điểm của SA
Xét ΔSAD có
M,N lần lượt là trung điểm của SA,SD
=>MN là đường trung bình của ΔSAD
=>MN//AD
=>MN//BC
=>M là hình chiếu song song của N theo phương BC lên mp(SAB)
a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B'C' song song với BC.
Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.
Khi M trùng với trung điểm A' của cạnh SA thì thiết diện MB'C'N' là hình bình hành.
b) Với M không trùng với A':
Gọi I ∈ B′M ∩ C′N. Ta có:
I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)
Như vậy I ∈ Δ = (SAB) ∩ (SCD).
Gọi N là trung điểm của SD
Xét ΔSCD có
M,N lần lượt là trung điểm của SC,SD
=>MN là đường trung bình của ΔSCD
=>MN//CD
=>MN//AB
=>N là hình chiếu song song của M theo phương AB lên mp(SAD)