Cho ΔABC có 3 góc nhọn. Đường tròn (O), đường kính BC cắt AB, A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2023

a: Xét (O) có

ΔBMC nội tiếp

BC là đường kính

Do đó; ΔBMC vuông tại M

=>CM\(\perp\)MB tại M

=>CM\(\perp\)AB tại M

Xét (O) có

ΔBNC nội tiếp

BC là đường kính

Do đó;ΔBNC vuông tại N

=>BN\(\perp\)NC tại N

=>BN\(\perp\)AB tại N

Xét ΔABC có

BN,CM là đường cao

BN cắt CM tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC tại K

b: Xét tứ giác AMHN có

\(\widehat{AMH}+\widehat{ANH}=90^0+90^0=180^0\)

=>AMHN là tứ giác nội tiếp đường tròn đường kính AH

=>A,M,H,N cùng thuộc đường tròn đường kính AH

tâm I là trung điểm của AH

c: IM=IH

=>ΔIMH cân tại I

=>\(\widehat{IMH}=\widehat{IHM}\)

mà \(\widehat{IHM}=\widehat{KHC}\)(hai góc đối đỉnh)

và \(\widehat{KHC}=\widehat{MBC}\left(=90^0-\widehat{MCB}\right)\)

nên \(\widehat{IMH}=\widehat{MBC}\)

OM=OC

=>ΔOMC cân tại O

=>\(\widehat{OMC}=\widehat{OCM}\)

=>\(\widehat{OMC}=\widehat{MCB}\)

\(\widehat{IMO}=\widehat{IMH}+\widehat{OMH}\)

\(=\widehat{MCB}+\widehat{MBC}=90^0\)

=>IM là tiếp tuyến của (O)

Xét ΔIMO và ΔINO có

IM=IN

MO=NO

IO chung

Do đó: ΔIMO=ΔINO

=>\(\widehat{IMO}=\widehat{INO}=90^0\)

=>IN là tiếp tuyến của (O)

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>ΔACD vuông tại C

mà CM là đường trung tuyến

nên CM=AD/2=AM=DM

Xét ΔMAO và ΔMCO có 

MA=MC

MO chung

AO=CO

DO đó: ΔMAO=ΔMCO

Suy ra: \(\widehat{MAO}=\widehat{MCO}=90^0\)

hay MC là tiếp tuyến của (O)

b: Ta có: MC=MA

nên M nằm trên đường trung trực của AC(1)

Ta có: OC=OA

nên O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OM là đường trung trực của AC

hay OM vuông góc với AC tại trung điểm của AC

11 tháng 5 2018

c. 4 điểm A,D,E,F cùng nằm trên đt đường kính (I) (gt) => ADEF là tứ giác nội tiếp (Định nghĩa)

=> \(\widehat{EFS}=\widehat{ADE}\)(Cùng bù với \(\widehat{AFE}\))

Vì BDEC là tứ giác nội tiếp (cmt) => \(\widehat{ADE}=\widehat{ECB}\)(Cùng bù với \(\widehat{BDE}\)) => \(\widehat{EFS}=\widehat{ECB}\)=> Tứ giác CEFS là tứ giác nội tiếp (DHNB) => \(\widehat{ESF}=\widehat{ECF}=\widehat{ACF}\)(2 góc nội tiếp cùng chắn \(\widebat{EF}\))

Lại có: ABCF là tứ giác nội tiếp (4 đỉnh A,B,C,F cùng thuộc đt (O) (gt)) => \(\widehat{ACF}=\widehat{ABF}\)(2 góc nội tiếp cùng chắn \(\widebat{AF}\))

=> \(\widehat{ESF}=\widehat{ABF}\)(1)

Áp dụng hệ thức lượng trong \(\Delta ABH\)vuông tại H với đường cao HD ta có: \(AH^2=AD.AB\)

Xét đt (I) có: \(\widehat{AFH}=90^o\)(Góc nội tiếp chắn nửa đt) => \(HF\perp AS\)

Áp dụng hệ thức lượng trong \(\Delta ASH\)vuông tại H với đường cao HF ta có: \(AH^2=AF.AS\)

=> \(AD.AB=AF.AS\Leftrightarrow\frac{AD}{AF}=\frac{AS}{AB}\)

Xét \(\Delta ADS\)và \(\Delta AFB\)có:

\(\widehat{A}\)Chung

\(\frac{AD}{AF}=\frac{AS}{AB}\)(cmt)

=> \(\Delta ADS~\Delta AFB\left(C.G.C\right)\)

=> \(\widehat{ASD}=\widehat{ABF}\left(2\right)\)

Từ (1) và (2) => \(\widehat{ESF}=\widehat{ASD}\)hay \(\widehat{ESF}=\widehat{DSA}=\widehat{DSF}\)(Do \(\overline{A,F,S}\left(gt\right)\Rightarrow\widehat{DSA}=\widehat{DSF}\)) => 3 điểm S,D,E thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => ĐPCM 

d.  Vì sđ\(\widebat{AB}=60^o\)(gt) => \(\widehat{AOB}=60^o\Rightarrow\Delta AOB\)đều => AB = OA = OB = R 

Áp dụng định lý pitago trong \(\Delta ABC\)vuông tại A có: \(AC=\sqrt{BC^2-AB^2}=\sqrt{(2R)^2-R^2}=R\sqrt{3}\)

=> \(S\Delta ABC=\frac{1}{2}AB.AC=\frac{1}{2}R.R\sqrt{3}=R^2\frac{\sqrt{3}}{2}\)

Mà \(S\Delta ABC=\frac{1}{2}AH.BC\Rightarrow AH=\frac{2.S\Delta ABC}{BC}=\frac{2.\frac{R^2\sqrt{3}}{2}}{2R}=\frac{R\sqrt{3}}{2}\)

Gọi \(R^'\)là bán kính đường tròn ngoại tiếp đt (I) => \(R^'=\frac{AH}{2}=\frac{R\sqrt{3}}{4}\)

Xét \(\Delta ADE\)và \(\Delta ACB\)có:

\(\widehat{A}\)chung

\(\widehat{ADE}=\widehat{ACB}\)(Cmt) 

=> \(\Delta ADE~\Delta ACB\left(g.g\right)\)=> \(\frac{S\Delta ADE}{S\Delta ACB}=\left(\frac{R^'}{R}\right)^2=\left(\frac{\frac{R\sqrt{3}}{4}}{R}\right)^2=\left(\frac{\sqrt{3}}{4}\right)^2=\frac{3}{16}\)

=> \(S\Delta ADE=\frac{3}{16}.S\Delta ACB=\frac{3}{16}.\frac{R^2\sqrt{3}}{2}=\frac{3R^2\sqrt{3}}{32}\)

Ta có: \(S_{BDEC}=S\Delta ABC-S\Delta ADE=\frac{R^2\sqrt{3}}{2}-\frac{3R^2\sqrt{3}}{32}=\frac{13R^2\sqrt{3}}{32}\)

29 tháng 7 2017

Nguyễn Thị Ngọc Anh

Cho 2 đường thẳng (d1): y = mx - 2 và (d2): y = (m - 2)x + m,Chứng minh với mọi giá trị của m,đường thẳng (d1) luôn đi qua điểm cố định B,đường thẳng (d2) luôn đi qua điểm cố định C,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

29 tháng 7 2017

bạn lấy bài này ở đâu ra vậy?