Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I M K
a, Xét tam giác vuông MHC có :
\(\widehat{CMH}+\widehat{HCM}=90^o\)
Xét tam giác vuông ABC có:
\(\widehat{HIB}+\widehat{HCM}=90^o\)
\(\Rightarrow\widehat{CMH}=\widehat{HIB}\)
Xét 2 tam giác : KHM và IHB
MH = HB ( gt )
\(\widehat{CMN}=\widehat{HBI}\left(cmt\right)\)
\(\widehat{MKH}=\widehat{HIB}=90^o\)
\(\Rightarrow\Delta KHM=\Delta IHB\)
b, \(\Rightarrow HK=HI\)
Xét 2 tam giác : KHA và IHA
KM = IH ( cm a )
AN chung
\(\widehat{HKA}=\widehat{AIM}=90^o\)
\(\Rightarrow\Delta KHA=\Delta IHA\)
\(\Rightarrow\widehat{KAH}=\widehat{HAI}\)
Vậy : AH là tia phân giác góc BAC
a, xet △ vuong mhc co ∠cmh + ∠hcm = 90 do xet △ vuong abc co ∠hbi + ∠hcm = 90 do suy ra ∠cmh = ∠hbi xet △ BHI va △ MHK co ∠CMH = ∠HBI [c/m tr] HM = BH [gt] ∠BIH = ∠MKH [=90 do] ➩ △ BHI = △ MHK [ch-gn] b, tu a co △bhi = △mhk ➩ ih = kh xet △aih va △akh co ah chung ih = kh [c/m tr] ∠aih = ∠akh [= 90 do] ➩ △aih = △kah [ch-cgv] ➩ ∠iah = ∠kah ➩ ah la p/g cua ∠bac
a) Xét tam giác ABC: BAC+ABC+ACB=180\(\Rightarrow\)90+50+ACB=180
\(\Rightarrow\)ACB=180-140=40 độ
Xét tam giác ABM và tam giác HBM có:
BM chung; ABM = HBM (gt) ; AB=HB(gt)
\(\Rightarrow\)Tam giác ABM = tam giác HBM (c.g.c)
b) Theo câu a)tam giác ABM =tam giác HBM (c.g.c) nên BAM=BHM=90
Hay HM vuông góc với BC
c) ta có HN vuông góc với AB ; AC vuông góc với AB nên Hn song song với Ac
Hình đây nhé mn!!
B A C H M
Mn thg cảm, hình ko đc chính xác cho lắm ^^"
tự ans lun vậy.--"
Từ H kẻ HE \(\perp AB,HF\perp AC\)
Xét \(\Delta HEB\)và \(\Delta AFM\)có:
\(\widehat{BEH}=\widehat{MFH}\left(=90^0\right)\)
HB=HM(gt)
\(\widehat{EBH}=\widehat{HMF}\)(cùng phụ với góc C)
\(\Rightarrow\Delta HEB=\Delta AFM\left(ch-gn\right)\)
=>HE=HF(2 CẠNH t/ư)
Xét \(\Delta HAE\)và \(\Delta HAF\)có:
\(\widehat{HEA}=\widehat{HFA}\left(=90^0\right)\)
HA chung
HE=HF(cmt)
\(\Rightarrow\Delta HAE=\Delta HAF\left(ch-cgv\right)\)
\(\Rightarrow\widehat{EAH}=\widehat{FAH}\)(2 góc t/ư)
\(\Rightarrow AH\)là pg \(\widehat{A}\)(đpcm)
Bạn tự vẽ hình nhé.
Kẻ HI vuông góc với AB tại I, HK vuông góc với AC tại K.
Xét tam giác HMC vuông tại H, ta có: \(\widehat{HMC}+\widehat{C}=90^o\)(1)
Xét tam giác ABC vuông tại A, ta có: \(\widehat{B}+\widehat{C}=90^o\)(2)
Từ (1) và (2) => \(\widehat{HMC}=\widehat{B}\)
Xét tam giác BHI vuông tại I và tam giác MHK vuông tại K có:
BH = MH (gt)
\(\widehat{IBH}=\widehat{HMK}\) (cmt)
=> Tam giác BHI = tam giác MHK
=> IH = HK
Xét tam giác IHA vuông tại I và tam giác KHA vuông tại K có:
cạnh huyển AH chung
IH = HK (cmt)
=> Tam giác IHA = tam giác KHA
=> \(\widehat{IAH}=\widehat{HAK}\)
=> AH là tia phân giác của góc A.
a: \(\widehat{MHK}+\widehat{KMH}=90^0\)(ΔMHK vuông tại K)
\(\widehat{HMC}+\widehat{HCM}=90^0\)(ΔMHC vuông tại H)
Do đó: \(\widehat{MHK}=\widehat{HCM}\)
=>\(\widehat{MHK}=\widehat{ACB}\)(1)
HI\(\perp\)AB
AC\(\perp\)AB
Do đó: HI//AC
=>\(\widehat{BHI}=\widehat{BCA}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{MHK}=\widehat{BHI}\)
Xét ΔMHK vuông tại K và ΔBHI vuông tại I có
MH=BH
\(\widehat{MHK}=\widehat{BHI}\)
Do đó: ΔMHK=ΔBHI
b: ΔMHK=ΔBHI
=>MK=BI
Xét tứ giác AIHK có
\(\widehat{AIH}=\widehat{AKH}=\widehat{KAI}=90^0\)
Do đó: AIHK là hình chữ nhật
=>AK=HI
BI+AM
=MK+AM
=AK
=IH