Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi thời gian dự kiến là $a$ ngày thì năng suất dự kiến là $\frac{130}{a}$ sản phẩm / ngày.
Theo bài ra ta có:
Năng suất thực tế: $\frac{130}{a}+2$
Thời gian thực tế: $a-2$
Sản lượng thực tế: $(\frac{130}{a}+2)(a-2)=130+2$
$\Leftrightarrow a-\frac{130}{a}=3$
$\Leftrightarrow a^2-3a-130=0$
$\Rightarrow a=13$ (chọn) hoặc $a=-10$ (loại)
Vậy thời gian dự kiến là $13$ ngày.
Bài 21:
Gọi x (sản phẩm/giờ) là năng suất dự kiến ban đầu của người đó \(\left(x\inℕ^∗\right)\)
=> x + 2 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ta có phương trình sau:
\(\frac{150}{x}-\frac{1}{2}-2=\frac{150-2x}{x+2}\)
\(\Leftrightarrow300\left(x+2\right)-x\left(x+2\right)-4x\left(x+2\right)=2\left(150-2x\right)x\)
\(\Leftrightarrow300x+600-x^2-2x-4x^2-8x=300x-4x^2\)
\(\Leftrightarrow x^2+10x-600=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+30\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-20=0\\x+30=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-30\left(ktm\right)\end{cases}}\)
Vậy ban đầu năng suất người đó là 20 (sản phẩm/giờ)
Bài 22:
Gọi x (sản phẩm/giờ) là năng suất dự kiến của người đó \(\left(x\inℕ^∗;x< 20\right)\)
=> x + 1 (sản phẩm/giờ) là năng suất lúc sau của người đó
Theo bài ra ta có phương trình:
\(\frac{80}{x+1}-\frac{1}{5}=\frac{72}{x}\)
\(\Leftrightarrow400x-x\left(x+1\right)=360\left(x+1\right)\)
\(\Leftrightarrow400x-x^2-x=360x+360\)
\(\Leftrightarrow x^2-39x+360=0\)
\(\Leftrightarrow\left(x-15\right)\left(x-24\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-15=0\\x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=15\left(tm\right)\\x=24\left(ktm\right)\end{cases}}\)
Vậy năng suất ban đầu là 15 sp/giờ
sản phẩm | năng suất | thời gian | |
dự kiến | 120 | x | \(\dfrac{120}{x}\) |
thực tế | 126 | x+3 | \(\dfrac{126}{x+3}\) |
gọi năng suất dự kiến làm là x (x>0) bộ/h
thời gian dự kiến làm xong là \(\dfrac{120}{x}\)h
năng suất thực tế làm x+3 bộ/h
thời gian thực tế làm xong \(\dfrac{120+6}{x+3}\)h
vì hoàn thành sớm hơn dự định 1 ngày nên ta có pt
\(\dfrac{120}{x}\)-1=\(\dfrac{120+6}{x+3}\)
giải pt x=15 bộ/h
vậy năng suất dự kiến may là 15 bộ trên 1 h
Gọi x(sản phẩm) và y(sản phẩm) lần lượt là số sản phẩm mà tổ I và tổ II được giao(Điều kiện: \(x,y\in Z^+\))
Vì theo kế hoạch hai tổ sản xuất 600 sản phẩm nên ta có phương trình:
x+y=600(1)
Số sản phẩm tổ I sản xuất được khi vượt mức kế hoạch 18% là:
\(x+\dfrac{18}{100}x=\dfrac{118}{100}x=\dfrac{59}{50}x\)
Số sản phẩm tổ II sản xuất được khi vượt mức kế hoạch 21% là:
\(y+\dfrac{21}{100}y=\dfrac{121}{100}y\)
Vì trong thời gian quy định, do áp dụng kỹ thuật mới nên hai tổ đã hoàn thành vượt mức 120 sản phẩm nên ta có phương trình:
\(\dfrac{59}{50}x+\dfrac{121}{100}y=720\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}x+y=600\\\dfrac{59}{50}x+\dfrac{121}{100}y=720\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{59}{50}x+\dfrac{59}{50}y=708\\\dfrac{59}{50}x+\dfrac{121}{100}y=720\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{100}y=-12\\x+y=600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=400\\x=600-y=600-400=200\end{matrix}\right.\)(thỏa ĐK)
Vậy: Số sản phẩm tổ I được giao là 200 sản phẩm
Số sản phẩm tổ II được giao là 400 sản phẩm
Gọi số sản phẩm nhóm thợ theo kế hoạch phải làm mỗi ngày là x (x ∈ ℕ * )
+) Theo kế hoạch: Thời gian hoàn thành là 3000/x (ngày)
+) Thực tế:
Số sản phẩm làm trong 8 ngày là 8x (sản phẩm)
Số sản phẩm còn lại là 3000 – 8x (sản phẩm)
Mỗi ngày sau đó nhóm thợ làm được x + 10 (sản phẩm)
Thời gian hoàn thành 3000 - 8 x x + 10 (ngày)
Vì thời gian thực tế ít hơn thời gian dự định là 2 ngày nên ta có phương trình:
Phương trình có hai nghiệm phân biệt: x 1 = − 25 – 125 = −150 (loại) và
x 2 = −25 + 125 = 100 (tmđk)
Vậy theo kế hoạch, mỗi ngày cần làm 100 sản phẩm
Đáp án: A
Gọi x là sản ppham xưởng sản xuất trong 1 ngày theo kế hoạch (x>0)
=>Số ngày theo kế hoạch là :\(\frac{110}{x}\)
Số ngày thực tế là \(\frac{1100}{x+5}\)theo gia thiet cua bai toan ta co :
\(\frac{1100}{x}-\frac{1100}{x+5}=2\)
<=>1100(x+5)-1100x=2x(x+5)
<=>2x^2+10x-5500=0
<=>x=50hay x=-55 loai
Vậy theo kế hoạch mỗi ngày phân xưởng phải sản xuất là 50 sản phẩm
Gọi số sản phẩm mà phân xưởng làm trong 1 ngày là x ( x > 0 )
=> Số ngày quy định = \(\frac{1100}{x}\)( ngày )
Mỗi ngày phân xưởng sản xuất vượt mức 5 sản phẩm
=> Số ngày hoàn thành = \(\frac{1100}{x+5}\)( ngày )
Vì thế kế hoạch hoàn thành sớm hơn quy định 2 ngày
=> Ta có phương trình : \(\frac{1100}{x}-\frac{1100}{x+5}=2\)
\(\Leftrightarrow\frac{1100\left(x+5\right)}{x\left(x+5\right)}-\frac{1100\cdot x}{x\left(x+5\right)}=\frac{2x\left(x+5\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow1100x+5500-1100x=2x^2+10x\)
\(\Leftrightarrow2x^2+10x-1100x-5500+1100x=0\)
\(\Leftrightarrow2x^2+10x-5500=0\)
\(\Delta'=b'^2-ac=5^2-2\cdot\left(-5500\right)=25+11000=11025\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(\hept{\begin{cases}x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-5+\sqrt{11025}}{2}=50\\x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-5-\sqrt{11025}}{2}=-55\end{cases}}\)
x > 0 => x = 50
Vậy theo kế hoạch , mỗi ngày phân xưởng sản xuất 50 sản phẩm
Gọi x,yx,y lần lượt là sản phẩm mà tổ 1, tổ 2 sản xuất được theo kế hoạch (0<x,y<600)(0<x,y<600)
Theo kế hoạch hai tổ sản xuất được 600600 sản phẩm, ta có phương trình: x+y=600(1)x+y=600(1)
Thực tế: Tổ 1 sản xuất vượt mức 18%18% tức là số sản phẩm là 118100x118100x
Tổ 2 sản xuất vượt mức 21%21% tức là số sản phẩm là 121100y121100y
Và cả hai tổ sản xuất được 720720 sản phẩm nên ta có phương trình: 118100x+121100y=720(2)118100x+121100y=720(2)
Từ (1) và (2), ta có hệ phương trình:
{x+y=600118100x+121100y=720⇔{x=200y=400{x+y=600118100x+121100y=720⇔{x=200y=400
Vậy theo kế hoạch, tổ 1 và tổ 2 lần lượt sản xuất được 200200 sản phẩm và 400400 sản phẩm