Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một người đều chơi 9 trận với 9 người người khác không có trận hòa.
Do đó: \(x_1+y_1=x_2+y_2=....=x_{10}+y_{10}=9\)
Mà tổng số trận thắng bằng tổng số trận thua do đó:
\(x_1+x_2+...+x_{10}=y_1+y_2+y_3+...+y_{10}\)
Ta có: \(\left(x_1^2+x_2^2+...+x_{10}^2\right)-\left(y_1^2+y_2^2+...+y_{10}^2\right)\)
\(=\left(x_1^2-y_1^2\right)+\left(x_2^2-y_2^2\right)+.....+\left(x_{10}^2-y_{10}^2\right)\)
\(=9\left(x_1-y_1\right)+9\left(x_2-y_2\right)+....+9\left(x_{10}-y_{10}\right)\)
\(=9\left(x_1-y_1+x_2-y_2+....+x_{10}-y_{10}\right)\)
\(=9\left[\left(x_1+x_2+...+x_{10}\right)-\left(y_1+y_2+y_3+....+y_{10}\right)\right]=0\)
Vậy \(x_1^2+x_2^2+...+x_{10}^2=y_1^2+y_2^2+....+y_{10}^2\)
Gọi x,y lần lượt là số học sinh nam và nữ của lớp 9A
Điều kiện: x,y>0; x,y nguyên
\(\frac{1}{2}\)số học sinh nam của lớp 9A là \(\frac{1}{2}x\)(học sinh)
\(\frac{5}{8}\)số học sinh nữ của lớp 9A là \(\frac{5}{8}y\)(học sinh)
Tổng số học sinh của lớp 9A là: \(\left(\frac{1}{2}x+\frac{5}{8}y\right)\)học sinh
để tham gia các cặp thi đấu thì số hộc sinh nam phải bằng số học sinh nữ nên ta có: \(\frac{1}{2}x=\frac{5}{8}y\)(1)
Số học sinh còn lại của lớp 9A là 16 học sinh nên:\(\left(x+y\right)-\left(\frac{1}{2}x+\frac{5}{8}y\right)=16\) (2)
Từ (1) và (2) ta có hệ phương trình\(\hept{\begin{cases}\frac{1}{2}x=\frac{5}{8}y\\\left(x+y\right)-\left(\frac{1}{2}x+\frac{5}{8}y\right)=16\end{cases}}\Rightarrow\hept{\begin{cases}x=20\\y=16\end{cases}}\)
Vậy lớp 9A có tất cả 36 học sinh
Gọi x,y lần lượt là số học sinh nam và nữ của lớp 9A
Điều kiện: x,y>0; x,y nguyên
1212số học sinh nam của lớp 9A là 12x12x(học sinh)
5858số học sinh nữ của lớp 9A là 58y58y(học sinh)
Tổng số học sinh của lớp 9A là: (12x+58y)(12x+58y)học sinh
để tham gia các cặp thi đấu thì số hộc sinh nam phải bằng số học sinh nữ nên ta có: 12x=58y12x=58y(1)
Số học sinh còn lại của lớp 9A là 16 học sinh nên:(x+y)−(12x+58y)=16(x+y)−(12x+58y)=16 (2)
Từ (1) và (2) ta có hệ phương trình\hept⎧⎨⎩12x=58y(x+y)−(12x+58y)=16⇒\hept{x=20y=16\hept{12x=58y(x+y)−(12x+58y)=16⇒\hept{x=20y=16
Vậy lớp 9A có tất cả 36 học sinh