\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}\)với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)

mà \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{11^2}>\frac{5}{12}\)

2 tháng 4 2018

\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)

\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)

\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)

\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)

\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)

\(\Rightarrow\)\(P< \frac{1}{16}\)

P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot

16 tháng 8 2018

Đạt BD

8 tháng 4 2017

\(\Leftrightarrow\frac{1}{2}x-\frac{3}{8}-\frac{2}{5}x=\frac{17}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{2}{5}x=\frac{17}{4}+\frac{3}{8}\)(Bạn tự quy đồng chỗ này)

\(\Leftrightarrow\frac{1}{10}x=\frac{37}{8}\)

\(\Leftrightarrow x=\frac{185}{4}\)

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)

Học good

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)

\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}\)

\(=-\frac{101}{200}\)

14 tháng 5 2019

Mk giải ko chép lại đề nhá!

Bài 3: 

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}\)\(-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(=\frac{50}{50}-\frac{1}{50}\)

\(=\frac{49}{50}\)

Vậy: M < 1

14 tháng 5 2019

Bài 2:

\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)

\(=\frac{1}{1}-\frac{1}{2015}\)

\(=\frac{2015}{2015}-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

18 tháng 3 2018

Cho mình lời giải đầy đủ nhé! * xin lỗi mấy bạn do lỗi phông*

22 tháng 6 2017

n=\(\frac{2}{3}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\left(1-\frac{1}{99}\right)\)

n=\(\frac{2}{3}\times\frac{98}{99}\)

n=\(\frac{196}{297}\)

22 tháng 6 2017

Câu \(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{2}{99.100}\)Bạn viết \(\frac{3}{99.100}=\frac{2}{99.100}\)mik sửa lại nhé. 

\(M=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.100}\)

\(M=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{100-99}{99.100}\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(M=\frac{3}{2}.\frac{99}{100}=\frac{297}{200}\)

\(N=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{97.99}\)

\(N=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+....+\frac{99-97}{97.99}\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)\)

\(N=\frac{3}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\Rightarrow N=\frac{3}{2}.\frac{98}{99}=\frac{49}{33}\)

Ta thấy : \(\frac{297}{200}>\frac{49}{33}\Rightarrow M>N\)