Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\sqrt{12}=2\sqrt{3}=\sqrt{3}+\sqrt{3}\)
ta có \(\sqrt{5}>\sqrt{3}\)và\(\sqrt{7}>\sqrt{3}\)=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
1) \(2\sqrt{2}=\sqrt{8}< \sqrt{9}=3\)
\(\Rightarrow\)\(6+2\sqrt{2}< 6+3=9\)
2) \(4\sqrt{5}=\sqrt{80}>\sqrt{49}=7\)
\(\Rightarrow\)\(9+4\sqrt{5}>9+7=16\)
3) \(2=\sqrt{4}>\sqrt{3}\)
\(\Rightarrow\)\(2-1>\sqrt{3}-1\)
hay \(1>\sqrt{3}-1\)
4) \(9-4\sqrt{5}< 16\)
5) \(\sqrt{2}>\sqrt{1}=1\)
\(\Rightarrow\)\(\sqrt{2}+1>2\)
a)
\(\left(\sqrt{5}+\sqrt{7}\right)^2=12+2\sqrt{35}\)
\(\sqrt{12}^2=12\)
=>\(\sqrt{5}+\sqrt{7}>\sqrt{12}\)
các câu còn lại cũng làm như vậy
a) Bình phương lên,ta so sánh \(\left(\sqrt{5}+\sqrt{7}\right)^2=5+2\sqrt{35}+7\text{ và }12\)
Xét hiệu hai vế \(\left(\sqrt{5}+\sqrt{7}\right)^2-12=2\sqrt{35}>0\) nên ....
b) \(14=\sqrt{14^2}=\sqrt{196}>\sqrt{195}=\sqrt{13}.\sqrt{15}\)
c) \(\left(\sqrt{8}+3\right)^2=8+2.\sqrt{72}+9;\left(6+\sqrt{2}\right)^2=36+2\sqrt{72}+2\)
\(\left(8+\sqrt{3}\right)^2-\left(6+\sqrt{2}\right)^2=\left(8+9\right)-\left(36+2\right)< 0\)
Do đó \(\left(8+\sqrt{3}\right)^2< \left(6+\sqrt{2}\right)^2\) suy ra \(\left(8+\sqrt{3}\right)< \left(6+\sqrt{2}\right)\)
d) So sánh \(\sqrt{27}+\sqrt{6}\text{ và }\sqrt{48}-1\)
Dễ chứng minh \(\sqrt{27}+\sqrt{6}> \sqrt{48}-1\)
Suy ra \(\sqrt{27}+\sqrt{6}+1>\sqrt{48}\) (thêm 1 vào mỗi vế)
Câu b : Ta có : \(\sqrt{13}.\sqrt{15}=\sqrt{\left(14-1\right)}.\sqrt{\left(14+1\right)}=\sqrt{14}^2-1=14-1< 14\)
a: \(\left(\sqrt{18}+3\right)^2=27+18\sqrt{2}\)
\(\left(6+\sqrt{2}\right)^2=38+12\sqrt{2}\)
mà \(27+18\sqrt{2}< 38+12\sqrt{2}\)
nên \(3+\sqrt{18}< 6+\sqrt{2}\)
b: \(14=\sqrt{196}>\sqrt{195}=\sqrt{13\cdot15}\)
Võ Đông Anh Tuấn
Áp dụng \(\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}\)
a)
\(7=\sqrt{49}\\ 3\sqrt{5}=\sqrt{9}\cdot\sqrt{5}=\sqrt{9\cdot5}=\sqrt{45}\\ \text{Vì }\sqrt{49}>\sqrt{45}\text{ nên }7>3\sqrt{5}\)
Vậy \(7>3\sqrt{5}\)
b)
\(2\sqrt{7}+3=\sqrt{4}\cdot\sqrt{7}+3=\sqrt{4\cdot7}+3=\sqrt{28}+3\\ \sqrt{28}+3>\sqrt{25}+3=5+3=8\)
Vậy \(8< 2\sqrt{7}+3\)
c)
\(3\sqrt{6}=\sqrt{9}\cdot\sqrt{6}=\sqrt{9\cdot6}=\sqrt{54}\\ 2\sqrt{15}=\sqrt{4}\cdot\sqrt{15}=\sqrt{4\cdot15}=\sqrt{60}\\ \text{Vì } \sqrt{54}< \sqrt{60}\text{nên }3\sqrt{6}< 2\sqrt{15}\)
Vậy \(3\sqrt{6}< 2\sqrt{15}\)
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)
\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)
\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ
\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)
\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)
\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)
#Học tốt ạ
Ta có \(\sqrt{8}+3< \sqrt{9}+3=3+3=6\)
=> \(\sqrt{8}+3< 6\)
Ta có \(\sqrt{48}< \sqrt{49};\sqrt{35}< \sqrt{36}\)
=> \(\sqrt{48}+\sqrt{35}< \sqrt{49}+\sqrt{46}\)
=> \(\sqrt{48}+\sqrt{35}< 13\)
=> \(\sqrt{48}< 13-\sqrt{35}\)
c) Ta có \(-\sqrt{19}< -\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{31}-\sqrt{17}\)
=> \(\sqrt{31}-\sqrt{19}< \sqrt{36}-17=6-\sqrt{17}\)
d) Ta có \(9=\sqrt{81}\Leftrightarrow\sqrt{81}>\sqrt{80}\);
\(-\sqrt{58}>-\sqrt{59}\)
=> \(\sqrt{81}-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
<=> \(9-\sqrt{58}>\sqrt{80}-\sqrt{59}\)
a)\(\sqrt{8}+3< \sqrt{9}+3=3+3=6< 6+\sqrt{2}\)
b)\(14=\sqrt{196}>\sqrt{195}=\sqrt{13.15}=\sqrt{13}.\sqrt{15}\)
c) Ta có: \(\hept{\begin{cases}\sqrt{27}>\sqrt{25}=5\\\sqrt{6}>\sqrt{4}=2\end{cases}\Rightarrow\sqrt{27}+\sqrt{6}+1>5+2+1=8}\)
Mà \(\sqrt{48}< \sqrt{49}=7< 8\)
\(\Rightarrow\sqrt{27}+\sqrt{6}+1>\sqrt{48}\)
Tham khảo nhé~