\(\left(\frac{-1}{8}\right)^{100}\)và  \(\left(\frac{-...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

Ta có:

\(\left(\frac{-1}{8}\right)^{100}=\frac{\left(-1\right)^{100}}{8^{100}}=\frac{1}{\left(2^3\right)^{100}}=\frac{1}{2^{300}}\)

\(\left(\frac{-1}{4}\right)^{200}=\frac{\left(-1\right)^{200}}{4^{200}}=\frac{1}{\left(2^2\right)^{100}}=\frac{1}{2^{200}}\)

Vì \(2^{300}>2^{200}\)\(\Rightarrow\frac{1}{2^{300}}< \frac{1}{2^{200}}\)

\(\Rightarrow\left(\frac{-1}{8}\right)^{^{100}}< \left(\frac{-1}{4}\right)^{200}\)

10 tháng 9 2016

ta có:\(\left(-\frac{1}{8}\right)^{180}=\left(\frac{1}{8}\right)^{180}=\left(\frac{1}{4}\right)^{2^{180}}=\left(\frac{1}{4}\right)^{360}\) 

ta có :\(\left(-\frac{1}{4}\right)^{200}=\left(\frac{1}{4}\right)^{200}\)

=>(1/4)^360<(1/4)^200

Vậy : (-1/8)^180 < ( -1/4)^200

12 tháng 10 2016

ta có:1/8^100

       -1/4^200=(-1/4^2)^100=1/16^100

=>1/8^100 >1/16^100

=>1/8^100 >-1/4^200

23 tháng 8 2018

Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)

               \(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)

               \(=\frac{1.2....18.19}{2.3...19.20}\)

               \(=\frac{1}{20}>\frac{1}{21}\)

Vậy A > 1/21

Bài làm

Ta có: \(\left(-\frac{1}{4}\right)^2=\left(\frac{1}{4}\right)^2\)

\(\left(\frac{1}{8}\right)^5=\left[\left(\frac{1}{4}\right)^2\right]^5=\left(\frac{1}{4}\right)^{10}\)

Mà \(2< 10\)

=> \(\left(\frac{1}{4}\right)^2< \left(\frac{1}{4}\right)^{10}\)

Hay \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)

Vậy \(\left(-\frac{1}{4}\right)^2< \left(\frac{1}{8}\right)^5\)

# Học tốt #

24 tháng 9 2019

Thank you very much!!!!!!

10 tháng 10 2017

Ta có :

\(M=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{99}{100}=\frac{3.8.15.....99}{4.9.16.....100}=\frac{1.3.2.4.3.5.....9.11}{2.2.3.3.4.4.....10.10}\)\(=\frac{1.2.3...9}{2.3...10}.\frac{3.4...11}{2.3...10}=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}< \frac{11}{19}\)

ta có M = (1- 1/4) (1- 1/9)... ( 1- 1/100)

             = 3/2^2.8/3^2 ... 99/10^2

             = 1.3/2^2 . 2.4/3^2 ... 9.11/10^ 2

             = 1.2.3...9/ 2.3.4...10 . 3.4.5... 11/ 2.3.4... 10

             = 1/10 . 11/2 = 11/20 < 11/19

              Vậy M < 11/19