Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)
\(\sqrt{99}<\sqrt{100}=10\)
Suy ra: \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)
Vậy..........
a,\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10=\sqrt{100}>\sqrt{99}\)
b,Ta có:\(\hept{\begin{cases}\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{100}}\\\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\\.........\end{cases}}\)\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+........+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+......+\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=10\)
Ta có:
\(\sqrt{99}< \sqrt{100}=10\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=10\)
Vậy \(\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
√17 + √26 + 1 và √99
Ta có: √17 > √16 (1)
√26 > √25 (2)
Từ (1) và (2) => √17 + √26 + 1 > √16 + √25 + 1
=> √17 + √26 + 1 > 4 + 5 + 1
=> √17 + √26 + 1 > 10
=> √17 + √26 + 1 > √100
Do √100 > √99
=> √17 + √26 + 1 > √99
Ta có
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}\)(1)
Mà \(\sqrt{99}< \sqrt{100}\)(2)
Từ (1)(2) \(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
P/s tham khảo nha
Ta có : \(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10\)(1)
\(\sqrt{99}< \sqrt{100}=10\)(2)
Từ (1) và (2) ta có : \(\sqrt{17}+\sqrt{26}+1>10>\sqrt{99}\)
\(\Rightarrow\sqrt{17}+\sqrt{26}+1>\sqrt{99}\)
a: \(\left(\sqrt{7}+\sqrt{15}\right)^2=22+2\sqrt{105}=7+15+2\sqrt{105}\)
\(7^2=49=7+42\)
mà \(15+2\sqrt{105}< 42\)
nên \(\sqrt{7}+\sqrt{15}< 7\)
b: \(\left(\sqrt{2}+\sqrt{11}\right)^2=13+2\sqrt{22}\)
\(\left(5+\sqrt{3}\right)^2=28+10\sqrt{3}=13+15+10\sqrt{3}\)
mà \(2\sqrt{22}< 15+10\sqrt{3}\)
nên \(\sqrt{2}+\sqrt{11}< 5+\sqrt{3}\)
\(\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}\)