Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left|a\right|\ge0\Rightarrow b^5-b^4c\ge0\Rightarrow b^5\ge b^4c\Rightarrow b\ge c\)
Với \(b< 0\Rightarrow c< 0\left(KTM\right)\)
Với \(b=0\Rightarrow\left|a\right|=0\Rightarrow a=0\left(KTM\right)\)
Với \(b>0\Rightarrow a< 0\left(h\right)a=0\)
+) Với \(a=0\Rightarrow b-c=0\Rightarrow b=c>0\left(KTM\right)\)
+) Với \(a< 0\Rightarrow b>0;c=0\)
zZz Cool Kid zZz bài bạn có ý đúng nhưng vẫn sai một số lỗi
-) b ko thể bằng c
-) b=0 => |a|=0 là sai, vì b=0 nếu c âm thì -c vẫn dương => a > 0 vẫn tm
-) ở dòng thứ 5, b=c cùng lớn hơn 0 nhưng vẫn còn th âm bạn chưa xét
Ta có:\(\left|a\right|=b^4.\left(b-c\right)\)
Vì |a| không âm => b4.(b-c) không âm => b-c không âm vì b4 không âm
Mà trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương nên b > c => a khác 0
Xét b = 0 vì b>c nên c < 0 => a > 0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Xét c = 0 vì b>c nên b>0 => a<0 (tm) vì trong 3 số a,b,c chỉ có 1 số bằng 0 ,1 số âm, 1 số dương
Vậy ... (tự kết luận)
1. a. \(3^{2010}=\left(3^2\right)^{1005}=9^{1005}\)
Vì \(9^{1005}< 10^{1005}\)
nên \(3^{2010}< 10^{1005}\)
b. Ta có :
\(3^{2010}=3.3.3.3....3\)( 2010 chữ số 3 )
\(\Rightarrow3^{2010}=\left(3.3\right)\left(3.3\right)\left(3.3\right)...\left(3.3\right)=9.9.9.9...9\)( 1005 chữ số 9 )
Xét \(9.9.9...9.9< 9.10.10.10...10=90000...00\) ( 1004 chữ số 0 và 1 chữ số 9 ). Nghĩa là có 1005 chữ số
Vậy \(3^{2010}\) có ít hơn 1006 chữ số
1.a)Ta có 32010 = (32)1005 = 91005 < 101005
=> 32010 < 101005
b) Vì 32010 < 101005 (cmt)
mà 101005 là số có 1005 chữ số
=> 32010 là số có ít hơn 1006 chữ số
2. a) Ta có 333444 = (3.111)444 = 3444.111444 = (34)111 . 111444 = 81111.111444 > 8111. 111444
=> 333444 > 8111. 111444
b) Ta có 333444 (3.111)444 = 3444.111444 = (34)111.111444 = 81111.111444 (1)
Lại có 444333 = (4.111)333 = 4333.111333 = (43)111.111333 = 64111.111333 (2)
Từ (1)(2) => 333444 > 444333
B= (1/2-1/3) + (1/3-1/4) + (1/4-1/5)+...+( 1/99-1/100)
B = (1/2-1/3) + (1/3 - 1/4) + (1/4 - 1/5)+...+ (1/99 + 1/100)
B= 1/2 +1/100=51/100
k mk nhóe
sai thì chỉ mk nhoa
a)A=1/51+1/52+...+1/100
=>A>1/100+1/100+...+1/100
=>A>50/100(vì có 50 số hạng)
=> A>1/2
b)Ta có:
B=1/2.3+1/3.4+...+1/99.100
=> B=1/2-1/3+1/3-1/4+...+1/99-1/100
=> B=1/2-1/100
Mà 1/100>0
=> B<1/2
=> B<1/2<A
=>B<A
1) \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\)
2) \(3^{21}=3^{20}\cdot3=9^{10}\cdot3\)
\(2^{31}=2^{30}\cdot2=8^{10}\cdot2\)
mà \(9^{10}\cdot3>8^{10}\cdot2\)=> tự viết tiếp
3) đợi chút
430 = (43)10 = 6410 > 4810 = ( 2 . 24 )10 = ( 210 ) . ( 2410 ) > 3 . 2410
=> 230 + 330 + 430 > 3 . 2410
.
Mít cứ bình phương lên là ok
(2\(\sqrt{7}\))2 =28 (1)
(3\(\sqrt{3}\))2 =27 (2)
vậy (1) > (2)
cứ thế mà làm là hết mít
a) \(\frac{17}{30}>\frac{51}{92}\)
b) \(\frac{-45}{47}>\frac{31}{-30}\)
c) \(\frac{22}{67}< \frac{51}{152}\)
d) \(-\frac{17}{39}< -\frac{17}{41};\frac{18}{-39}< -\frac{17}{41}\)
\(3^{21};2^{31}\)
2^31= (2^3)^10 x 2= 8^10 x 2
3^21= (3^2)^10 x 3= 9^10 x 3
=> 3^21>2^31
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
ta có:2^10=1024>10^3=>2^100>10^30(1)
mặt khác,ta cũng có: 2^10=1024<1025=>2^100<1025^10
=> \(\frac{2^{100}}{10^{30}}=\left(\frac{2^{10}}{10^3}\right)^{10}<\left(\frac{1025}{10^3}\right)^{10}=\left(\frac{41}{40}\right)^{10}\)
ta có:nếu 0<b<a=>ab+b<ab+a =>b(a+1)<a(b+1)=>a+1/b+1<a/b (*)
áp dụng (*) cho bài ta có\(\frac{41}{40}<\frac{40}{39}<\frac{39}{38}<..<\frac{32}{31}<\frac{31}{30}\)
=>\(\frac{2^{100}}{10^{30}}<\left(\frac{41}{40}\right)^{10}<\frac{40}{39}.\frac{39}{38}....\frac{32}{31}.\frac{31}{30}=\frac{4}{3}<2\Rightarrow2^{100}<2.10^{30}\left(2\right)\)
từ (1) và (2)=>10^30<2^100<2.10^30 hay 2^100 có 31 chữ số(đpcm)