Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
2017 :2018 = 0,9995044598612488
mả 2018 : 2017 = 1,00049578520526
suy ra 2017 / 2018 < 2018 / 2017
Bạn Nguyễn Quang Kiên trả lời sai rồi , ở kia là số mũ chứ đâu phải phân số đâu , sao làm vậy được
B = \(\frac{2015+2016+2017}{2016+2017+2018}=\frac{2016.3}{2017.3}=\frac{2016}{2017}\left(1\right)\)
Mà A = \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}.\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=> A > B.
Vậy A > B .
Bạn Dont look at me
Bạn nên làm theo bạn ấy
Bạn k đúng cho bạn ấy. Bởi vì bạn ấy làm đúng
Theo mk là vậy
\(A=\frac{10^{2016}+2018}{10^{2017}+2018}\)
\(\Rightarrow10A=\frac{10^{2017}+20180}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018+18162}{10^{2017}+2018}\)
\(=\frac{10^{2017}+2018}{10^{2017}+2018}+\frac{18162}{10^{2017}+2018}\)
\(=1+\frac{18162}{10^{2017}+2018}\)
\(B=\frac{10^{2017}+2018}{10^{2018}+2018}\)
\(\Rightarrow10B=\frac{10^{2018}+20180}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018+18162}{10^{2018}+2018}\)
\(=\frac{10^{2018}+2018}{10^{2018}+2018}+\frac{18162}{10^{2018}+2018}\)
\(=1+\frac{18162}{10^{2018}+2018}\)
Ta thấy: \(1+\frac{18162}{10^{2017}+2018}>1+\frac{18162}{10^{2018}+2018}\)
=> 10A > 10B
=> A > B
\(2019^{2017}=\left(2019^{\frac{2017}{2018}}\right)^{2018}\approx2001,4^{2018}\)
Vì \(2001,4< 2017\Rightarrow2019^{2017}< 2017^{2018}\)
Ta có :
\(A=\frac{2018^{2017}+1}{2018^{2017}-1}=\frac{2018^{2017}-1+2}{2018^{2017}-1}=\frac{2018^{2017}-1}{2018^{2017}-1}+\frac{2}{2018^{2017}-1}=1+\frac{2}{2018^{2017}-1}\)
\(B=\frac{2018^{2017}-1}{2018^{2017}-3}=\frac{2018^{2017}-3+2}{2018^{2017}-3}=\frac{2018^{2017}-3}{2018^{2017}-3}+\frac{2}{2018^{2017}-3}=1+\frac{2}{2018^{2017}-3}\)
Vì \(2018^{2017}-1>2018^{2017}-3\) nên \(\frac{2}{2018^{2017}-1}< \frac{2}{2018^{2017}-3}\)
\(\Rightarrow\)\(1+\frac{2}{2018^{2017}-1}< 1+\frac{2}{2018^{2017}-3}\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
ta có nếu \(\frac{a}{b}\)>1 thì \(\frac{a}{b}\)>\(\frac{a+m}{b+m}\)
mà B> nên B=\(\frac{2018^{2017}-1}{2018^{2017}-3}\)>\(\frac{2018^{2017}-1+2}{2018^{2017}-3+2}\)=\(\frac{2018^{2017}+1}{2018^{2017}-1}\)=A
vậy B>A
\(A=\frac{2017^{2018}+1}{2017^{2018}-3}\)\(=\frac{2017^{2018}-3+4}{2017^{2018}-3}\)\(=1+\frac{4}{2017^{2018}-3}\)
\(B=\frac{2017^{2018}-1}{2017^{2018}-5}=\frac{2017^{2018}-5+4}{2017^{2018}-5}\)\(=1+\frac{4}{2017^{2018}-5}\)
Vì \(2017^{2018}-3>2017^{2018}-5\)(vì cái nào trừ đi ít thì còn nhiều,cái nào trừ đi nhiều thì còn ít)
\(\Rightarrow1+\frac{4}{2017^{2018}-3}< 1+\frac{4}{2017^{2018}-5}\)(vì trong 2 phân số cùng tử, phân số nào có mẫu nhỏ hơn thì lớn hơn)
\(\Rightarrow A< B\)
Mình sửa lại đề bài nha!Đề của mình mới đúng!CHÚC BẠN HỌC TỐT!
Ta có :
A = \(\frac{2017^{2018}}{2017^{2018}}+\frac{1}{-3}\)= 1 + \(\frac{1}{-3}\)
B = \(\frac{2017^{2018}-1}{2017^{2018}-5}\)= \(\frac{2017^{2018}-5}{2018^{2018}-5}+\frac{4}{2017^{2018}-5}\)= 1 + \(\frac{4}{2017^{2018}-5}\)
Mà 1 + \(\frac{4}{2017^{2018}-5}\)> 1 + \(\frac{1}{-3}\)Do đó A < B
Vậy A < B
Theo mình thì \(2017^{2018}\) lớn hơn
Giải
Ta có :
\(2017^{2018}=2017.2017^{2017}\)
Mà 2017.2017 >2018 nên 2017.\(2017^{2017}>2018^{2017}\) hay \(2017^{2018}>2018^{2017}\)
Bạn vào trang Wolfram Alpha sẽ thấy:
20182017 có 6667 chữ số
20172018 có 6669 chữ số
Vậy 20182017 < 20172018
Mk cần lời giải rõ ràng , mọi người giúp mk nha