Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)
=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)
Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)
=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)
=> 10B < 10A
=> B < A
b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)
Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)
=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)
=> B < A
Ta có: \(\frac{2019}{2020}>\frac{2019}{2020+2021};\frac{2020}{2021}>\frac{2020}{2020+2021}\)
=> \(\frac{2019}{2020}+\frac{2020}{2021}>\frac{2019}{2020+2021}+\frac{2020}{2020+2021}=\frac{2019+2020}{2020+2021}\)
=> A > B.
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
a, \(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}==\left(\frac{7}{8^4}-\frac{3}{8^4}\right)-\left(\frac{7}{8^3}-\frac{3}{8^3}\right)=\frac{4}{8^4}-\frac{4}{8^3}< 0\)
Vậy A < B
b, \(A=\frac{10^7+5}{10^7-8}=\frac{10^7-8+13}{10^7-8}=1+\frac{13}{10^7-8}\)
\(B=\frac{10^8+6}{10^8-7}=\frac{10^8-7+13}{10^8-7}=1+\frac{13}{10^8-7}\)
Vì \(10^7-8< 10^8-7\Rightarrow\frac{1}{10^7-8}>\frac{1}{10^8-7}\Rightarrow\frac{13}{10^7-8}>\frac{13}{10^8-7}\Rightarrow A>B\)
c,Áp dụng nếu \(\frac{a}{b}>1\Rightarrow\frac{a}{b}>\frac{a+n}{a+n}\) có:
\(B=\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}=\frac{10^{1993}+10}{10^{1992}+10}=\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}=\frac{10^{1992}+1}{10^{1991}+1}=A\)
Vậy A < B
b: \(A=\dfrac{10^7-8+13}{10^7-8}=1+\dfrac{13}{10^7-8}\)
\(B=\dfrac{10^8-7+13}{10^8-7}=1+\dfrac{13}{10^8-7}\)
mà \(10^7-8< 10^8-7\)
nên A>B
c: \(\dfrac{1}{10}A=\dfrac{10^{1992}+1}{10^{1992}+10}=1-\dfrac{9}{10^{1992}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{1993}+1}{10^{1993}+10}=1-\dfrac{9}{10^{1993}+10}\)
mà \(\dfrac{9}{10^{1992}+10}>\dfrac{9}{10^{1993}+10}\)
nên A<B
N =2019+2020/2020+2021
=2019/2020+2021 + 2020/2020+2021
Ta có:
2019/2020>2019/2020+2021
2020/2021 > 2020/2020+2021
=>M>N
Ta có :
\(N=\frac{2018+2019+2020}{2019+2020+2021}\)
\(=\frac{2018}{2019+2020+2021}+\frac{2019}{2019+2020+2021}+\frac{2020}{2019+2020+2021}\)
Mà \(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Leftrightarrow M>N\)
Trả lời:
Ta có:
\(\frac{2018}{2019}>\frac{2018}{2019+2020+2021}\)
\(\frac{2019}{2020}>\frac{2019}{2019+2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2019+2020+2021}\)
\(\Rightarrow\frac{2018}{2019}+\frac{2019}{2020}+\frac{2020}{2021}>\frac{2018+2019+2020}{2019+2020+2021}\)
hay \(M>N\)
Vậy \(M>N\)
\(a)\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{13}{4}-\dfrac{7}{-24}\)
\(=\dfrac{85}{24}\)
\(b)\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{-3}{56}-\dfrac{3}{28}\)
\(=\dfrac{-9}{56}\)
\(c)\dfrac{7}{36}-\dfrac{8}{-9}+\dfrac{-2}{3}\)
\(=\dfrac{13}{12}\)\(+\dfrac{-2}{3}\)
\(=\dfrac{5}{12}\)
\(d)\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-1}{14}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-23}{126}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-4}{7}+\dfrac{4}{7}\)
\(=0\)
\(e)\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{-5}{56}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{83}{56}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{305}{168}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\dfrac{47}{24}+\dfrac{5}{-8}\)
\(=\dfrac{4}{3}\)
Bài 2 : Tính
a) \(\dfrac{3}{4}-\dfrac{-5}{2}-\dfrac{7}{-24}\)
\(=\dfrac{18}{24}-\dfrac{-60}{24}-\dfrac{-4}{24}\)
\(=\dfrac{18-\left(-60\right)-\left(-7\right)}{24}\)
\(=\dfrac{85}{24}\)
b) \(\dfrac{4}{7}+\dfrac{-5}{8}-\dfrac{3}{28}\)
\(=\dfrac{32}{56}+\dfrac{-35}{56}-\dfrac{6}{56}\)
\(=\dfrac{32+\left(-35\right)-6}{56}\)
\(=\dfrac{-9}{56}\)
c) \(\dfrac{7}{36}-\dfrac{8}{9}+\dfrac{-2}{3}\)
\(=\dfrac{7}{36}-\dfrac{32}{36}+\dfrac{-24}{36}\)
\(=\dfrac{7-32+\left(-24\right)}{36}\)
\(=\dfrac{-49}{36}\)
d) \(\dfrac{-1}{2}+\dfrac{3}{7}-\dfrac{1}{9}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\dfrac{-9}{18}+\dfrac{3}{7}-\dfrac{2}{18}+\dfrac{-7}{18}+\dfrac{4}{7}\)
\(=\left(\dfrac{-9}{18}+\dfrac{-7}{18}-\dfrac{2}{18}\right)+\left(\dfrac{3}{7}+\dfrac{4}{7}\right)\)
\(=\left(-1\right)+1\)
\(=0\)
e) \(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-8}\)
\(=\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{11}{7}\right)+\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\dfrac{1}{3}\)
\(=2+\left(-1\right)+\dfrac{1}{3}\)
\(=1+\dfrac{1}{3}\)
\(=\dfrac{4}{3}\)
CÁCH 1 : A = \(\dfrac{235}{11}-\left(\dfrac{8}{5}+\dfrac{81}{11}\right)\)
A = \(\dfrac{235}{11}-\left(\dfrac{88}{55}+\dfrac{405}{55}\right)\)
A = \(\dfrac{235}{11}-\dfrac{493}{55}\)
A = \(\dfrac{1175}{55}+\dfrac{493}{55}\)
A = \(\dfrac{1668}{55}\)
a) A = 3/7
b) B = 73/13
c) C = 37/7
d) D = 12
ba câu a) ,b) ,c) bn đổi ra hỗn số giúp mk nha
tick cho tớ nha
Ta có:
\(A=\dfrac{7\left(4-7^{2020}\right)}{7^{2021}}+\dfrac{5+7^{2021}}{7^{2021}}\)
\(A=\dfrac{28-7^{2021}+5+7^{2021}}{7^{2021}}=\dfrac{33}{7^{2021}}\)
Ta có: \(B=\dfrac{7^2}{7^{2021}}=\dfrac{49}{7^{2021}}\)
=> B>A
Thank you☺