\(\sqrt{15}+\sqrt{14}\);

             b=\(\sqrt{17...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Ta có \(a^2=15+2.\sqrt{15.14}+14=29+2.\sqrt{210}\)

\(b^2=17+2.\sqrt{17.12}+12=29+2.\sqrt{204}\)

Dễ thấy \(a^2>b^2\)mà a,b>0 suy ra a>b

3 tháng 7 2018

\(\sqrt{46-6\sqrt{5}}-\sqrt{29-12\sqrt{5}}\\ =\sqrt{\left(3\sqrt{5}\right)^2-2.3\sqrt{5}+1}-\sqrt{\left(2\sqrt{5}\right)^2-2.3.2\sqrt{5}+3^2}\\ =3\sqrt{5}-1-2\sqrt{5}+3=\sqrt{5}+2\)

Mấy câu sau tương tự.

3 tháng 7 2018

Bạn ơi cho mình hỏi câu này làmntn ạ

\(\sqrt{27-12\sqrt{ }5}\)

\(\sqrt{4+\sqrt{ }15}\)

21 tháng 8 2020

a. Không giải được\(\sqrt{29}-6\sqrt{6}< 0\)     

b. \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

=\(\left(\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

21 tháng 8 2020

a) Không thể giải vì \(\sqrt{29}-6\sqrt{6}< 0\) 

b) \(\left(\sqrt{8}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

=\(\left(2\sqrt{2}-3\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

=\(\left(-\sqrt{2}-\sqrt{10}\right)\cdot\sqrt{2}-\sqrt{20}\) 

=\(-2-2\sqrt{5}-2\sqrt{5}\) 

=\(-2-4\sqrt{5}\) 

=\(-2\left(1+2\sqrt{5}\right)\)

6 tháng 8 2017

\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)

\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)

\(=11.2.13.\sqrt{9}-1=286.3-1=857\)

6 tháng 8 2017

\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)

\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)

\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)

3 tháng 7 2018

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}+\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}=5+2\sqrt{6}+5-2\sqrt{6}=10\) ---

\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2\sqrt{5}\cdot\sqrt{8}+5}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{8}+8}=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{8}\right)^2}=\sqrt{8}-\sqrt{5}+3\sqrt{5}+\sqrt{8}=2\sqrt{8}+2\sqrt{5}\)

---

\(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}=3-\sqrt{2}+\sqrt{2}-1=2\)

---

\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot\sqrt{27}\cdot\sqrt{8}+8}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)

---

\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+\sqrt{9+2\cdot2\cdot2\sqrt{2}+8}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=3-2\sqrt{2}+3+2\sqrt{2}=6\)

---

3 tháng 7 2018

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}\)

\(=\sqrt{25-2\times5\sqrt{24}+24}+\sqrt{25+2\times5\sqrt{24}+24}\)

\(=\sqrt{\left(5-\sqrt{24}\right)^2}+\sqrt{\left(5+\sqrt{24}\right)^2}\)

\(=5-\sqrt{24}+5+\sqrt{24}\)

\(=10\)

29 tháng 7 2018

tính

\(\frac{a-\sqrt{ab}}{b-\sqrt{ab}}+\frac{b-\sqrt{ab}}{a+\sqrt{ab}}=\frac{a-ab+b-ab}{ab+b\sqrt{ab}-a\sqrt{ab}-ab}=\frac{a+b}{\sqrt{ab}\left(b-a\right)}\)

còn lại mk chịu

29 tháng 7 2018

bạn ghi rõ hơn nữa được không chứ mình chưa hiểu lắm

18 tháng 12 2016

a) \(2^2=4\)

   \(\sqrt{3^2}=3\)
\(4>3\Rightarrow\) \(2>\sqrt{3}\)
b) \(6^2=36\)
 \(\sqrt{41^2}=41\)
\(36< 41\Rightarrow6< \sqrt{41}\)

22 tháng 12 2016

Bài này: sao lại lớp 9 nhỉ; lớp 7 có rồi mà

24 tháng 7 2019

b)\(\sqrt{17-12\sqrt{2}}\)

=\(\sqrt{9-2.3.2\sqrt{2}+8}\)

=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(3-2\sqrt{2}\)

21 tháng 9 2021

Câu 1.        Biến đổi biểu thức trong căn thành một bình phương  một tổng hay một hiệu rồi từ đó phá bớt một lớp căn 

a/\(\sqrt{41+12\sqrt{5}}\)

 

9 tháng 9 2016

Bài 2 : 

a,\(\sqrt{24}+\sqrt{45}< \sqrt{25}+\sqrt{49}=5+7=12=>\sqrt{24}+\sqrt{45}< 12\)

b. \(\sqrt{37}-\sqrt{15}>\sqrt{36}-\sqrt{16}=6-4=2=>\sqrt{37}-\sqrt{15}>2\)

c, \(\sqrt{15}.\sqrt{17}>\sqrt{15}.\sqrt{16}>\sqrt{16}=>\sqrt{15}.\sqrt{17}>\sqrt{16}\)