Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
202303 = ( 2.101 )3.101 = ( 23.1013)101 = (8.1013)101
303202 = (3.101)2.101 = (32.1012)101 = (9.1012)101
Ta có : 8.1013 = 8.101.1012 > 9.1012
=> 202303 > 303202
202303=(2023)101
303202=(3032)101
ta có:
2023=23.1013=8.1013=808.1012
3032=32.1012=9.1012=9.1012
vì 808>9
=> 2023>3032
=> 202303>303202
\(202^{203}=\left(2.101\right)^{3.101}=\left(1^3.101^3\right)^{101}=\left(8.101.10^{12}\right)^{101}=\left(808.1012\right)^{101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(32.101^2\right)^{101}=\left(9.101^2\right)^{101}\)
\(\Rightarrow\left(80^{ }8.101^2\right)>\left(9.101^2\right)\)
Vậy:
5^ 202 = (5^2)^101
2^505 = (2^5)^101
mà 5^2 < 2^5
=> (5^2)^101 <(2^5)^101
Vậy 5^ 202 < 2^505
Ta có : 5202 = ( 52 )101 = 25101
2505 = ( 25 )101 = 32101
Vì 25101 < 32101 nên 5202 < 2505
ta có:202^203=(202^3)101=816080^101
303^202=(303^2)^101=91809^101
vì 816080>91809=>202^303>303^202
a) 220= 22.10= ( 22)10=410
330= 33.10=(33)10= 2710
Vì 410 < 2710
=> 220 < 330
b) 2505= 25.101= (25)101= 32101
5 202= 52.101= (52)101= 25101
Vì 32101>25101
=> 2505>5202
\(a,2^{20}=\left(2^2\right)^{10}=4^{10}\)(1)
\(3^{30}=\left(3^3\right)^{10}=27^{10}\)(2)
Từ (1) và (2)
\(\Rightarrow3^{30}>2^{20}\)
\(b,2^{505}=\left(2^5\right)^{101}=32^{101}\)(1)
\(5^{202}=\left(5^2\right)^{101}=25^{101}\)(2)
Từ(1) và (2)
\(2^{505}>5^{202}\)
Ta có:
\(3D=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)
\(3D-D=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)
\(2D=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3^{100}}\)
Đặt \(E=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3E=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3E-E=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2E=3-\frac{1}{3^{99}}< 3\)
\(E< \frac{3}{2}\)
\(2D< \frac{3}{2}-\frac{1}{3^{100}}< \frac{3}{2}\)
\(D< \frac{3}{4}\)
Vậy...
bai 2: a) \(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^2\right)^{10}=9^{10}\)
vi 810 <910 nen 230 <320
b) \(5^{202}=\left(5^2\right)^{101}=25^{101}\)
\(2^{505}=\left(2^5\right)^{101}=32^{101}\)
vi 25101 <32101 nen 5202 <2505
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
vi 81111>64111 va 111444>111333
nen 333444>444333
bai 3 : \(\left(\frac{1}{3}\right)^{2n-1}=3^5\)
\(\left(\frac{1}{3}\right)^{2n-1}=\left(\frac{1}{3}\right)^{-5}\)
2n-1=-5
2n=-5+1
2n=-4
n=-4:2
n=-2
Bai 4 : 3x-5/9=0 va 3y+0,4/3=0
3x=5/9 va 3y=2/15
x=5/27 va y=2/45
Bai 5:
A=75. {42002.(42+1)+....+(42+1)+1)+25
A=75.{42002.20+...+20+1}+25
A=75.{20.(42002+...+1)+1}+25
A=75.20.(42002+..+1)+75+25
A=1500.(42002+...+1)+100
A=100.{15.(42002+...+1)+1} chia het cho 100
ta có
4200 = (22)100 = 2200 < 2202
Ta có:
\(4^{100}=\left(2^2\right)^{100}=2^{200}\)
Vì\(2^{200}< 2^{202}\)nên \(4^{100}< 2^{202}\)
Vậy\(4^{100}< 2^{202}\)