K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2015

hình như toàn chép bài nhau thì phải

20 tháng 12 2015

Gọi n là số cạnh của đa giác. 
Ta có : 

- Số đường chéo của đa giác là : n(n−3)2 

Cái này dễ chứng minh thôi bn! 

Từ mỗi đỉnh của hình n giác lồi ta vẽ được n - 1 đoạn thẳng nối đỉnh đó với n - 1 đỉnh còn lại, trong đó có 2 đoạn thẳng trùng với 2 cạnh của đa giác. Vậy qua mỗi đỉnh của hình n giác lồi vẽ được n - 3 đường chéo, hình n giác có n đỉnh nên vẽ được n(n - 3) đường chéo, trong đó mỗi đường chéo được tính 2 lần nên thực chất chỉ có n(n−3)2 đường chéo. 

- Tổng số đo các góc trong đa giác : 180o.(n−2) 

Còn số cạnh của đa giác thì tự đếm ra, nếu đề bài cho 1 số gt bắt tìm số cạnh thì dựa vào công thức tính đường chéo hay công thức tính số đo 1 góc đa giác đều (180o.(n−2)n.

Số đường chéo xuất phát từ mỗi đỉnh của đa giác n cạnh là n - 3.

__________________

17 tháng 12 2015

 cau tra loi la 3

 

17 tháng 12 2015

Công thức : Số đừng chéo xuất phát từ 1 đỉnh ủa đa giác lồi n cạnh là

 n -3

+ lục giác => 6 -3 =3

19 tháng 3 2017

Số đường chéo xuất phát từ 1 đỉnh của đa giác n cạnh là n – 3

Do đó, Số đường chéo xuất phát từ 1 đỉnh của đa giác 20 cạnh là: 20 – 3 = 17

Chọn đáp án C

Giả sử góc A < góc D. Chứng minh AC > BD

Dựng tia AE sao cho: góc DAE = góc ADC để được hình thang cân ADCE.

Ta có: góc AEC = góc DCE và AC = DE

Ta có: góc EBD > góc DCB > góc DEB

=> ED > BD => AC > BD

16 tháng 12 2015

3 đường