Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5/x = 1/6 + y/3
=> 5/x = 1/6 + 2y/6
=> 5/x = 1+2y/6
=> x.(1+2y) = 5.6 = 30
=> x và 1+ 2y nhận các ước của 30
=> 1 + 2y thuộc Ư(30)
=> 1 + 2y thuộc {+_1;+_2;+_3;+_5;+_6;+_15;+_30}
Mà 1+2y là số lẻ => 1 + 2y nhận các ước lẻ
=> 1+2y thuộc { +_1;+_3;+_5;+_15}
........
Bn tự lm tiếp nhé, tính k nhầm thì mk nghĩ có 8 cặp
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{2}+\frac{1}{2.x.y}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{xy+1}{2xy}\Leftrightarrow\frac{2x+2y}{2xy}=\frac{xy+1}{2xy}\)
\(\Leftrightarrow2x+2y=xy+1\Leftrightarrow2x-xy+2y-1=0\)
\(\Leftrightarrow x\left(2-y\right)-2\left(2-y\right)=-3\Leftrightarrow\left(2-y\right)\left(x-1\right)=-3\)
Vì x, t nguyên nên 2 - y và x - 1 cũng nguyên. Vậy thì chúng phải là ước của -3.
Ta có bảng:
x-1 | -3 | -1 | 1 | 3 |
x | -2 | 0 | 2 | 4 |
2-y | 1 | 3 | -3 | -1 |
y | 1 | -2 | 5 | 3 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (-2;1) , (0; -2) , (2 ; 5) , (4 ; 3).
b) Do x, y nguyên nên (x -1)2 và y + 1 đều là ước của -4.
Ta có bảng:
(x-1)2 | 1 | 2 | 4 |
x | 0 hoặc 2 | \(\orbr{\begin{cases}x=\sqrt{2}+1\\x=1-\sqrt{2}\end{cases}}\left(l\right)\) | -1 hoặc 3 |
y + 1 | -4 | -1 | |
y | -3 | -2 |
Vậy ta có các cặp số (x ; y) thỏa mãn là: (0; -3) , (2; -3) , (-1; -2) (3 ; -2).