K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 6 2020

\(\frac{sinx}{1+cosx}+\frac{1+cosx}{sinx}=\frac{sin^2x+\left(1+cosx\right)^2}{sinx\left(1+cosx\right)}=\frac{sin^2x+cos^2x+2cosx+1}{sinx\left(1+cosx\right)}\)

\(=\frac{2+2cosx}{sinx\left(1+cosx\right)}=\frac{2\left(1+cosx\right)}{sinx\left(1+cosx\right)}=\frac{2}{sinx}\)

\(\frac{cosx}{1-sinx}=\frac{cos2.\frac{x}{2}}{1-sin2.\frac{x}{2}}=\frac{cos^2\frac{x}{2}-sin^2\frac{x}{2}}{sin^2\frac{x}{2}+cos^2\frac{x}{2}-2sin\frac{x}{2}.cos\frac{x}{2}}=\frac{\left(cos\frac{x}{2}-sin\frac{x}{2}\right)\left(cos\frac{x}{2}+sin\frac{x}{2}\right)}{\left(cos\frac{x}{2}-sin\frac{x}{2}\right)^2}\)

\(=\frac{sin\frac{x}{2}+cos\frac{x}{2}}{cos\frac{x}{2}-sin\frac{x}{2}}=\frac{\sqrt{2}cos\left(\frac{\pi}{4}-\frac{x}{2}\right)}{\sqrt{2}sin\left(\frac{\pi}{4}-\frac{x}{2}\right)}=cot\left(\frac{\pi}{4}-\frac{x}{2}\right)\)

3 tháng 6 2020

@Nguyễn Việt Lâm cho mình hỏi dấu = thứ 2 từ cuối bài 2 đếm lên sao r đc như v

AH
Akai Haruma
Giáo viên
23 tháng 7 2018

Lời giải:

Ta có:

\(\frac{1+\sin x}{1-\sin x}+\frac{1-\sin x}{1+\sin x}=\frac{(1+\sin x)^2+(1-\sin x)^2}{(1-\sin x)(1+\sin x)}\)

\(=\frac{1+\sin ^2x+2\sin x+1-2\sin x+\sin ^2x}{1-\sin ^2x}\)

\(=\frac{2(1+\sin ^2x)}{\cos ^2x}=\frac{2(\sin ^2x+\cos ^2x+\sin ^2x)}{\cos ^2x}\)

\(=\frac{4\sin ^2x+2\cos ^2x}{\cos ^2x}=4(\frac{\sin x}{\cos x})^2+2=4\tan ^2x+2=2(1+2\tan ^2x)\)

Ta có đpcm.

NV
16 tháng 4 2019

a/

\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)

\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)

b/

\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)

\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)

\(=\left(1-sinx+cosx\right)^2\)

c/

\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)

\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)

d/

\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)

29 tháng 4 2019

xét vế phải

( cosa+1-sina)^2

= cos^2 +1+ sin^2+2cosa-2sina-2sinacosa

= 2( 1+ cosa-sina-sinacosa)

= 2( 1-sina) ( 1+cosa)

NV
9 tháng 4 2019

a/ \(sin3x=sin\left(2x+x\right)=sin2xcosx+cos2x.sinx\)

\(=2sinxcos^2x+\left(1-2sin^2x\right)sinx=2sinx\left(1-sin^2x\right)+sinx-2sin^3x\)

\(=3sinx-4sin^3x\)

b/

\(tan2x+\frac{1}{cos2x}=\frac{sin2x}{cos2x}+\frac{1}{cos2x}=\frac{sin2x+1}{cos2x}=\frac{2sinxcosx+sin^2x+cos^2x}{cos^2x-sin^2x}\)

\(=\frac{\left(sinx+cosx\right)^2}{\left(sinx+cosx\right)\left(cosx-sinx\right)}=\frac{sinx+cosx}{cosx-sinx}=\frac{\left(sinx+cosx\right)\left(cosx-sinx\right)}{\left(cos-sinx\right)^2}\)

\(=\frac{cos^2x-sin^2x}{cos^2x+sin^2x-2sinxcosx}=\frac{1-2sin^2x}{1-sin2x}\)

c/

\(\frac{cosx+sinx}{cosx-sinx}-\frac{cosx-sinx}{cosx+sinx}=\frac{\left(cosx+sinx\right)^2-\left(cosx-sinx\right)^2}{cos^2x-sin^2x}\)

\(=\frac{2sinxcosx+2sinxcosx}{cos2x}=\frac{4sinxcosx}{cos2x}=\frac{2sin2x}{cos2x}=2tan2x\)

d/

\(\frac{sin2x}{1+cos2x}=\frac{2sinxcosx}{1+2cos^2x-1}=\frac{2sinxcosx}{2cos^2x}=\frac{sinx}{cosx}=tanx\)

e/

21 tháng 4 2019

Chào bạn mình xin trả lời:

VT=(1-sinx)(1+sinx)=(1)2-sin2x=1-sin2x=cos2x=sin2x.\(\frac{cos^2x}{sin^2x}\)=sin2x.cot2x=VP(dpcm)