Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\dfrac{1}{11}>\dfrac{1}{20}\\ \dfrac{1}{12}>\dfrac{1}{20}\\ ..........\\ \dfrac{1}{20}=\dfrac{1}{20}\)
\(\Rightarrow\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{20}>\dfrac{1}{20}+\dfrac{1}{20}+...+\dfrac{1}{20}\\ \Rightarrow S>\dfrac{10}{20}\\ \Rightarrow S>\dfrac{1}{2}\)
Ta có: \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{20}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{10}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{19}+\dfrac{1}{20}-1-\dfrac{1}{2}-...-\dfrac{1}{10}\)
\(=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)
Vậy \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{11}+\dfrac{1}{12}+...+\dfrac{1}{20}\)
Ta có: \(S< \dfrac{1}{2}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{11}+\dfrac{1}{31}+\dfrac{1}{31}+\dfrac{1}{32}+\dfrac{1}{32}\) \(=\dfrac{1}{2}+\dfrac{3}{11}+\dfrac{2}{31}+\dfrac{2}{32}\)
\(=\dfrac{4909}{5456}< \dfrac{9}{10}\)
\(\Rightarrow S< \dfrac{9}{10}\)
Vậy \(S< \dfrac{9}{10}\)
Theo đề bài :
\(S=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)
S có tất cả 10 hạng tử, do đó :
\(S\) > \(\left(\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}\right)+\left(\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{20}\right)\)
\(S\) > \(5\times\dfrac{1}{15}+5\times\dfrac{1}{20}=\dfrac{7}{12}\)
Vậy \(S>\dfrac{7}{12}\)
2)
S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\)
S = 3 . (\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\))
S = 1 . (\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{43.46}\))
S = 1 . (\(1-\dfrac{1}{4}+...+\dfrac{1}{43}-\dfrac{1}{46}\))
S = 1 . (\(1-\dfrac{1}{46}\))
S = 1 . \(\dfrac{45}{46}\)
S = \(\dfrac{45}{46}\)
=> \(\dfrac{45}{46}\) < 1
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(-\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(-\dfrac{1}{12}+\dfrac{1}{12}\right)+\left(-\dfrac{1}{13}+\dfrac{1}{13}\right)+\left(-\dfrac{1}{14}+\dfrac{1}{14}\right)+\left(-\dfrac{1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\\ =\dfrac{1}{16}\)
Tính nhanh :
\(\dfrac{1}{10}+\dfrac{-1}{11}+\dfrac{1}{12}+\dfrac{-1}{13}+\dfrac{1}{14}+\dfrac{-1}{15}+\dfrac{1}{16}+\dfrac{-1}{10}+\dfrac{1}{11}+\dfrac{-1}{12}+\dfrac{1}{13}+\dfrac{-1}{14}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{10}+\dfrac{-1}{10}\right)+\left(\dfrac{-1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{12}+\dfrac{-1}{12}\right)+\left(\dfrac{-1}{13}+\dfrac{1}{13}\right)+\left(\dfrac{1}{14}+\dfrac{-1}{14}\right)\)
\(+\left(\dfrac{-1}{15}+\dfrac{1}{15}\right)+\dfrac{1}{16}\)
\(=0+0+...+0+\dfrac{1}{16}\)
\(=\dfrac{1}{16}\)
Dấu " / " là phân số nhé
a) 5/-4 . 16/25 + -5/4 . 9/25
= -5/4 . 16/25 + -5/4 . 9/25
= -5/4 . ( 16/25 + 9/25 )
= -5/4 . 1
= -5/4
b) 4 11/23 - 9/14 + 2 12/23 - 5/4
= 103/23 - 9/14 + 58/23 - 5/4
= 103/23 + 58/23 - 9/14 - 5/4
= 7 - 9/14 - 5/4
= 143/28
c) 2 13/27 - 7/15 + 3 14/27 - 8/15
= 67/27 - 7/15 + 95/27 - 8/15
= 67/27 + 95/27 - 7/15 - 8/15
= 6 - 7/15 - 8/15
= 5
Ta có S = 1/11+1/12+1/13+...+1/19+1/20 nên S có 10 số hạng
Và 1/2 = 10/20
Mà 1/11 > 1/12 > 1/13 > 1/14 > 1/15 > 1/16 > 1/17 > 1/18 > 1/19 > 1/20
Nên 1/11+1/12+1/13+...+1/19+1/20 > 1/20x10
=> 1/11+1/12+1/13+...+1/19+1/20 > 10/20
=> 1/11+1/12+1/13+...+1/19+1/20 > 1/2
Vậy S > 1/2