Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: B=\(\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}-\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}=\frac{2+\sqrt{3}-2+\sqrt{3}}{\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}}=\frac{2\sqrt{3}}{\sqrt{4-\sqrt{3}^2}}=\frac{2\sqrt{3}}{1}=2\sqrt{3}\)
b1. a)
Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10
=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102
2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10
5 + 2 căn 6 lớn hơn hoặc bằng 10
2 căn 6 lớn hơn hoặc bằng 5
( 2 căn 6 )2 lớn hơn hoặc bằng 52
4 * 6 lớn hơn 25
24 lớn hơn hoặc bằng 25 (sai)
Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10
a ) \(\dfrac{2}{\sqrt{3}-1}\) - \(\dfrac{2}{\sqrt{3}+1}\) = \(\dfrac{2\left(\sqrt{3}+1\right)-2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
= \(\dfrac{2\sqrt{3}+2-2\sqrt{3}+2}{3-1}\) = \(\dfrac{4}{2}\) = 2
b) \(\dfrac{5}{12\left(2\sqrt{5}+3\sqrt{2}\right)}\) - \(\dfrac{5}{12\left(2\sqrt{5}-3\sqrt{2}\right)}\)
= \(\dfrac{5\left(2\sqrt{5}-3\sqrt{2}\right)-5\left(2\sqrt{5}+3\sqrt{2}\right)}{12\left(2\sqrt{5}+3\sqrt{2}\right)\left(2\sqrt{5}-3\sqrt{2}\right)}\)
= \(\dfrac{10\sqrt{5}-15\sqrt{2}-10\sqrt{5}-15\sqrt{2}}{12\left(20-18\right)}\)
= \(\dfrac{-30\sqrt{2}}{24}\) = \(\dfrac{-15\sqrt{2}}{12}\) = \(\dfrac{-5\sqrt{2}}{4}\)
c) \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}\) +\(\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\) = \(\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
= \(\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\) = \(\dfrac{60}{20}\) = 3
d) \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{\sqrt{3+1}}+1}\)
= \(\dfrac{\sqrt{3}}{\sqrt{2}-1}\) - \(\dfrac{\sqrt{3}}{\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}\left(\sqrt{2}+1\right)-\sqrt{3}\left(\sqrt{2}-1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
= \(\dfrac{\sqrt{6}+\sqrt{3}-\sqrt{6}+\sqrt{3}}{2-1}\) = \(2\sqrt{3}\)
b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)
a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)
Lời giải:
\(x=\sqrt{4+\sqrt{8}}.\sqrt{(2+\sqrt{2+\sqrt{2}})(2-\sqrt{2+\sqrt{2}})}\)
\(=\sqrt{4+2\sqrt{2}}.\sqrt{2^2-(2+\sqrt{2})}=\sqrt{2(2+\sqrt{2})}.\sqrt{2-\sqrt{2}}\)
\(=\sqrt{2}.\sqrt{(2+\sqrt{2})(2-\sqrt{2})}=\sqrt{2}.\sqrt{2^2-2}=2\)
\(y=\frac{6\sqrt{2}-4\sqrt{3}+2\sqrt{5}}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{\frac{2}{3}(9\sqrt{2}-6\sqrt{3}+3\sqrt{5})}{9\sqrt{2}-6\sqrt{3}+3\sqrt{5}}=\frac{2}{3}\)
Do đó:
\(E=\frac{1+xy}{x+y}-\frac{1-xy}{x-y}=\frac{1+\frac{4}{3}}{2+\frac{2}{3}}-\frac{1-\frac{4}{3}}{2-\frac{2}{3}}=\frac{9}{8}\)
1/
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)
\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)
\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)
\(=\sqrt{2}\)
2/
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(5-2\right)=-3\)
#F.C
ta có : \(A=\left(\dfrac{3}{2}\sqrt{6}+2\sqrt{\dfrac{2}{3}}-4\sqrt{\dfrac{3}{2}}\right)\left(3\sqrt{\dfrac{2}{3}}-\sqrt{12}-\sqrt{6}\right)\)
\(=\sqrt{\dfrac{2}{3}}\left(\dfrac{9}{2}+2-6\right)\sqrt{\dfrac{2}{3}}\left(3-3\sqrt{2}-3\right)\)
\(\dfrac{2}{3}\dfrac{1}{2}\left(-3\sqrt{2}\right)=-\sqrt{2}\)
ta có : \(B=\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{6+2\sqrt{5}}}{2}-\dfrac{\sqrt{5}-1}{2}\)
\(=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}}{2}-\dfrac{\sqrt{5}-1}{2}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{2}=1\)
ta có : \(C=\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{2+\sqrt{4+2\sqrt{3}}}+\dfrac{\sqrt{2}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\dfrac{\sqrt{2}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\dfrac{\sqrt{2}}{3+\sqrt{3}}+\dfrac{\sqrt{2}}{3-\sqrt{3}}=\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)+\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)
\(=\dfrac{2\sqrt{6}}{2\sqrt{3}}=\sqrt{\dfrac{6}{3}}=\sqrt{2}\)
Xin chào bạn. Rất vui đc làm quen với bạn. Chúc bạn chăm chỉ học tập như hiện tại nhé!!