K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

Mình gợi ý bạn nhé ^^

  • \(A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=a^3+b^3+c^3-3abc\)
  • B không rút gọn được.
  • \(C=\left(a+b+c\right)^2-\left(a+b\right)^2-\left(a+c\right)^2-\left(b+c\right)^2\)

\(=-a^2-b^2-c^2\)

  • \(D=\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(b+c-a\right)^2\)

\(=3a^2+2ab-2ac+3b^2+2bc+3c^2\)

\(=\left(a^2+2ab+b^2\right)+\left(b^2+2bc+c^2\right)+\left(c^2-2ac+c^2\right)+a^2+b^2+c^2\)

\(=\left(a+b\right)^2+\left(b+c\right)^2+\left(c-a\right)^2+a^2+b^2+c^2\)

19 tháng 9 2017

a) (a + b + c + d)(a - b - c - d)

= a(a + b + c + d) - b(a + b + c + d) - c(a + b + c + d) - d(a + b + c + d)

= (aa + ab + ac + ad) - (ba + bb + bc + bd) - (ca + cb + cc + cd) - (da + db + dc + dd)

= aa - bb - cc - dd

17 tháng 11 2017

Ta có a3+b3+c3-3abc

=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2+2ab-3ab -ac-bc)

=(a+b+c)(a2+b2+c2-ab-bc-ac)

 =>a3+b3+c3-3abc / a2+b2+c2-ab-bc-ac

=a+b+c

16 tháng 11 2017

https://h.vn/hoi-dap/question/53588.html . Vào link này nha

27 tháng 7 2016

= (a+b+c)3

31 tháng 10 2017

Đặt A = BT cần chứng minh 

a² + b² + c² = 1 => b² + a² = ( 1 - c² ) 

=> c/(a²+b²) = c²/c(1-c²) 

Ta có 2c²(1-c²)(1-c²) ≤ ( 2c² + 1 - c² + 1 - c² )^3/27 = 8/27 

=> c(1 - c² ) ≤ 2/√27 

=> c²/c(1-c²) ≥ √27 . c²/2 

T² => A ≥ √27/2 ( c² + b² + a² ) = √27/2 = 3.√3/2 

=> ĐPCM 

Dấu = xảy ra <=> 
{ 2c² = 1- c² ; 2a² = 1 - a² , 2b² = 1- b² 
{ a² + b² + c² = 1 

<=> a = b = c = 1/√3

31 tháng 10 2017

chỗ nào có 1 thay ab+bc+ac=1 vô, còn lại chịu khó tự sướng nha bạn mik ko muốn viết nhiều đâu

16 tháng 1 2018

Ngồi hóng cao nhân

16 tháng 1 2018

Với a,b,c khác 0 và a+b+c=0 ta có 

\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}=\frac{ab}{\left(a+b\right)^2-2ab-c^2}+\frac{bc}{\left(b+c\right)^2-2bc-a^2}+\frac{ca}{\left(c+a\right)^2-2ca-b^2}=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}+\frac{bc}{\left(b+c+a\right)\left(b+c-a\right)-2bc}+\frac{ca}{\left(c+a+b\right)\left(c+a-b\right)-2ca}=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}+-\frac{1}{2}+-\frac{1}{2}=-\frac{3}{2}\)

Vậy A=-3/2