Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{75}+\sqrt{48}-\sqrt{300}\) = \(5\sqrt{3}+4\sqrt{3}-10\sqrt{3}\) = \(-\sqrt{3}\)
b) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}\) = \(7\sqrt{2}-6\sqrt{2}+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}\) = \(3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\) = \(6\sqrt{a}\)
d) \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\) = \(4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)
= \(4\sqrt{b}-5\sqrt{10b}\)
\(1.A=\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{\dfrac{1}{3}.144}-2\sqrt{\dfrac{1}{3}.225}-\sqrt{\dfrac{1}{3}.9}+5\sqrt{\dfrac{4}{3}}=6\sqrt{\dfrac{1}{3}}-30\sqrt{\dfrac{1}{3}}-3\sqrt{\dfrac{1}{3}}+10\sqrt{\dfrac{1}{3}}=-17\sqrt{\dfrac{1}{3}}\) \(2.B=\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)=\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)=\sqrt{3}\left(1-\sqrt{3}\right)=\sqrt{3}-3\) \(3.C=\left(2\sqrt{7}-2\sqrt{6}\right).\sqrt{6}-\sqrt{168}=2\sqrt{42}-12-2\sqrt{42}=-12\) \(4.D=\left(\sqrt{28}-2\sqrt{8}+\sqrt{7}\right).\sqrt{7}+4\sqrt{14}=\left(3\sqrt{7}-4\sqrt{2}\right)\sqrt{7}=21-4\sqrt{14}+4\sqrt{14}=21\)
1,\(4\sqrt{5}+2\sqrt{5}-\sqrt{5}-15\sqrt{5}=-10\sqrt{5}\)
2,\(8\sqrt{5}-15\sqrt{5}+15\sqrt{5}-3\sqrt{5}=5\sqrt{5}\)
3,\(\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}=33\)
4,\(7\sqrt{7a}+3\sqrt{7a}-2\sqrt{7a}=8\sqrt{7a}\)
5,\(-6\sqrt{a}-\sqrt{6a}+\sqrt{6a}=-6\sqrt{a}\)
6,\(8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
a/ \(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2\sqrt{4.2.5\sqrt{4.3}}-2\sqrt{\sqrt{25.3}}-3\sqrt{5\sqrt{16.3}}\)
= \(2.2\sqrt{2.5.2\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{5.4\sqrt{3}}=4.2\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-3.2\sqrt{5\sqrt{3}}\)
= \(\sqrt{5\sqrt{3}}\left(8-2-6\right)=\sqrt{5\sqrt{3}}.0=0\)
b/ \(2\sqrt{8\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}=2\sqrt{2.4\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{4.5\sqrt{3}}\)
= \(4\sqrt{2\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=4\sqrt{2\sqrt{3}}-8\sqrt{5\sqrt{3}}\)
a: \(=2\sqrt{2}+30\sqrt{2}-3\sqrt{2}+6\sqrt{2}=26\sqrt{2}\)
b: \(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}+\sqrt{3}+\dfrac{5}{2}\sqrt{3}=-\dfrac{9}{2}\sqrt{3}\)
a: \(=2\sqrt{\sqrt{3}}\cdot4\sqrt{5}-2\cdot\sqrt{\sqrt{3}}\cdot\sqrt{5}-3\cdot\sqrt{\sqrt{3}}\cdot2\sqrt{5}\)
\(=2\sqrt{\sqrt{3}}\left(4\sqrt{5}-\sqrt{5}-3\sqrt{5}\right)=0\)
b: \(=2\cdot2\sqrt{2}\cdot\sqrt{\sqrt{3}}-2\cdot\sqrt{5}\cdot\sqrt{\sqrt{3}}-3\cdot2\sqrt{5}\cdot\sqrt{\sqrt{3}}\)
\(=2\sqrt{\sqrt{3}}\left(2\sqrt{2}-\sqrt{5}-3\sqrt{5}\right)=2\sqrt{\sqrt{3}}\cdot\left(2\sqrt{2}-4\sqrt{5}\right)\)
a) \(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b) \(\left(2\sqrt{3}+\sqrt{5}\right).\sqrt{3}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
c) \(\left(\sqrt{x}+2\right)\left(x-2\sqrt{x}+4\right)=\left(\sqrt{x}\right)^3+8\)
d) \(\left(\sqrt{x}-\sqrt{y}\right)\left(x+y+\sqrt{xy}\right)=\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3\)
\(a.A=\sqrt{75}+\sqrt{48}-\sqrt{300}=\sqrt{25.3}+\sqrt{16.3}-\sqrt{100.3}=5\sqrt{3}+4\sqrt{3}-10\sqrt{3}=-\sqrt{3}\) \(b.B=\sqrt{98}-\sqrt{72}+0,5\sqrt{8}=\sqrt{49.2}-\sqrt{36.2}+0,5\sqrt{4.2}=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}\) \(c.\dfrac{5\sqrt{5}-\sqrt{15.5}+5\sqrt{5}}{\sqrt{5}}=\dfrac{\sqrt{5}\left(10-\sqrt{15}\right)}{\sqrt{5}}=10-\sqrt{15}\)