Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}.\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)
= \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\cdot\dfrac{x^3-y^3}{xy}\right)\cdot\dfrac{x}{x-y}\)
= \(\dfrac{\left(x^2-y^2\right)\left(x+y\right)-x^3+y^3}{xy\left(x+y\right)}\cdot\dfrac{x}{x-y}\)
= \(\dfrac{xy\left(x-y\right)}{y\left(x+y\right).\left(x-y\right)}\)
= \(\dfrac{x}{x+y}\)
\(a,=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\\ b,=\dfrac{\left(x+y\right)^2-16}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)
a, \(\left(a+5\right)^2+2\left(a+5\right)\left(\dfrac{1}{2}-a\right)+\left(\dfrac{1}{2}-a\right)^2=\left(a+5+\dfrac{1}{2}-a\right)^2=\left(\dfrac{11}{2}\right)^2=\dfrac{121}{4}\)
b,\(\dfrac{x^2-16+2xy+y^2}{3x^2-12x+3xy}=\dfrac{\left(x^2+2xy+y^2\right)-4^2}{3x\left(x-4+y\right)}=\dfrac{\left(x+y-4\right)\left(x+y+4\right)}{3x\left(x+y-4\right)}=\dfrac{x+y+4}{3x}\)
\(\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}-\dfrac{y}{y-x}-\dfrac{2xy}{x^2-y^2}\right)\)
\(=\left(\dfrac{x\left(x+y\right)-4xy+y\left(x+y\right)}{x+y}\right):\left(\dfrac{x\left(x-y\right)+y\left(x+y\right)-2xy}{x^2-y^2}\right)\)
\(=\dfrac{\left(x-y\right)^2}{x+y}:\dfrac{\left(x-y\right)^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}.\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^2}=x-y\)
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)
A= \(\left[\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}\right]:\dfrac{4xy}{y^2-x^2}\)
\(=\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{y^2-x^2}\right]:\dfrac{4xy}{y^2-x^2}\)
=\(\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y-x\right)\left(y+x\right)}\right]:\dfrac{4xy}{y^2-x^2}\)
=\(\left[\dfrac{y-x}{\left(x+y\right)^2.\left(y-x\right)}+\dfrac{y+x}{\left(x+y\right)^2\left(y-x\right)}\right]:\dfrac{4xy}{y^2-x^2}\)
=\(\left[\dfrac{y-x+y+x}{\left(x+y\right)^2\left(y-x\right)}\right]:\dfrac{4xy}{y^2-x^2}\)
\(=\dfrac{2y}{\left(x+y\right)^2\left(y-x\right)}:\dfrac{4xy}{y^2-x^2}\)
=\(\dfrac{2y.\left(y-x\right)\left(y+x\right)}{\left(x+y\right)^2\left(y-x\right)4xy}\)
=\(\dfrac{1}{\left(x+y\right)2x}\)
=\(\dfrac{1}{2x^2+2xy}\)