Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\sqrt{x+1-2\sqrt{x+1}\cdot1+1}=\sqrt{\left(\sqrt{x+1}+1\right)^2}\)
\(=\sqrt{x+1}+1\)
A = \(\frac{8}{\sqrt{5}-1}\) - (\(2\sqrt{5}-1\) ) ( chúng ta cần trục căn thức lên để khử mẫu )
= \(\frac{8\left(\sqrt{5}+1\right)}{5-1}\)- \(\left(2\sqrt{5}-1\right)\)
= \(2\sqrt{5}\)+ 2 - \(2\sqrt{5}\)+1
= 3
B = \(\frac{\left(1-\sqrt{x}\right)^2+4\sqrt{x}}{1+\sqrt{x}}\)( x \(\ge\)0 )
= \(\frac{1-2\sqrt{x}+x+4\sqrt{x}}{1+\sqrt{x}}\)
= \(\frac{1+2\sqrt{x}+x}{1+\sqrt{x}}\)
= \(\frac{\left(1+\sqrt{x}\right)^2}{1+\sqrt{x}}\)
= 1 +\(\sqrt{x}\)
#mã mã#
ta có \(\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\)=> đk là x > hoặc = 1
với \(\sqrt{x-1}>1=>\left(\sqrt{x-1}-1\right)^2=\sqrt{x-1}-1\)
với \(\sqrt{x-1}< 1=>\left(\sqrt{x-1}-1\right)^2=1-\sqrt{x-1}\)
thay vào P ta có 2 kq là: 1 và -1
ĐK : \(x\ge1\)
\(A=\sqrt{x+2\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}}-\sqrt{x-1+6\sqrt{x-1}+9}\)
\(=\sqrt{(\sqrt{x-1}-1)^2}-\sqrt{(\sqrt{x-1}+3)^2}\)
\(=\left|\sqrt{x-1}-1\right|-\left|\sqrt{x-1}+3\right|\)
\(=\hept{\begin{cases}1-\sqrt{x-1}-\sqrt{x-1}-3;1\le x\le2\\\sqrt{x-1}-1-\sqrt{x-1}-3;x>2\end{cases}}\)
\(=\hept{\begin{cases}-2-2\sqrt{x-1};1\le x\le2\\-4;x>2\end{cases}}\)
\(\sqrt{x+2\sqrt{x-1}}\)
\(=\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=\sqrt{x-1}+1\)
\(=\sqrt{x-1+2\sqrt{x-1}\cdot1+1}=\sqrt{\left(\sqrt{x-1}+1\right)^2}=\sqrt{x-1}+1\)
a/ Ta có
P = \(\frac{1+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\) - \(\frac{2+x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\) - \(\frac{1+\sqrt{x}}{x+\sqrt{x}+1}\)
= \(\frac{-\sqrt{x}}{1+\sqrt{x}+x}\)
\(\sqrt{x-1-2\sqrt{x-2}}=\sqrt{\left(x-2\right)-2\sqrt{x-2}+1}=\sqrt{\left(\sqrt{x-2}-1\right)^2}=\sqrt{x-2}-1\)
Chỉnh lại kết quả nè
\(=\hept{\begin{cases}\sqrt{x-2}-1\Leftrightarrow x\ge3\\1-\sqrt{x-2}\Leftrightarrow2\le x\le3\end{cases}}\)