\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(\sqrt{\frac{a}{b}}+\sqrt{ab}+\frac{a}{b}\sqrt{\frac{b}{a}}\)

\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a^2b}{b^2a}}\)

\(=\sqrt{\frac{a}{b}}+\sqrt{ab}+\sqrt{\frac{a}{b}}\)

\(=2\sqrt{\frac{a}{b}}+\sqrt{ab}\)

13 tháng 5 2018

a) Với x = 25 thì \(N=\frac{\sqrt{25}+1}{\sqrt{25}}=\frac{6}{5}\)

b) Ta có   \(M=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)^2.\left(\sqrt{x}-1\right)}\)

\(M=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\)

Suy ra \(S=M.N=\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

14 tháng 8 2016

đầu tiên phải sửa điều kiện của a đó là \(a\ne9\)

 

15 tháng 8 2016

R sao nữa bn

1: \(=\dfrac{1}{a+b}\cdot a^2\cdot\left|a-b\right|=\dfrac{a^2\left|a-b\right|}{a+b}\)

2: \(=\sqrt{9}\cdot\sqrt{a^2}\cdot\sqrt{\left(b-2\right)^2}=9\cdot\left|a\right|\cdot\left|b-2\right|\)

3: \(=\sqrt{13a\cdot\dfrac{52}{a}}=\sqrt{52\cdot13}=2\sqrt{13}\cdot\sqrt{13}=26\)

4: \(=4x-2\sqrt{2}-a\)(vì a>1>0)

NV
12 tháng 5 2019

\(x^2-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}+2\right)-1=\frac{1}{4}\left(a^2+\frac{1}{a^2}-2\right)=\frac{1}{4}\left(a-\frac{1}{a}\right)^2\)

Tương tự \(y^2-1=\frac{1}{4}\left(b-\frac{1}{b}\right)^2\)

\(P=\frac{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)-\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}{\frac{1}{4}\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)+\frac{1}{4}\left(a-\frac{1}{a}\right)\left(b-\frac{1}{b}\right)}\)

\(=\frac{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}-ab+\frac{a}{b}+\frac{b}{a}-\frac{1}{ab}}{ab+\frac{a}{b}+\frac{b}{a}+\frac{1}{ab}+ab-\frac{a}{b}-\frac{b}{a}+\frac{1}{ab}}=\frac{\frac{a}{b}+\frac{b}{a}}{ab+\frac{1}{ab}}=\frac{a^2+b^2}{a^2b^2+1}\)

30 tháng 12 2019

\(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{\sqrt{a}^3+\sqrt{b}^3}{a-b}\)

\(=\sqrt{a}+\sqrt{b}+\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\sqrt{a}+\sqrt{b}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}+\frac{a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{a-b+a-\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}\)

\(=\frac{2a-\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)

25 tháng 8 2016

a) ĐKXĐ: \(x\ge0;x\ne1\)

P=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

 =\(\left(\frac{a-1}{2\sqrt{a}}\right)^2.\left(\frac{-1-3\sqrt{a}}{a-1}\right)\)

 =\(\frac{\left(a-1\right)^2}{4a}.\frac{-1-3\sqrt{a}}{a-1}\)

 =\(\frac{\left(a-1\right)\left(-1-3\sqrt{a}\right)}{4a}\)

 

 

7 tháng 11 2017

\(X=\sqrt{a^2+1+\left(1-\frac{1}{a+1}\right)^2}+\frac{a}{a+1}\)

\(=\sqrt{a^2+1+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+1\right)\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1\)

8 tháng 8 2016

1) \(\left(a-b\right)\cdot\sqrt{\frac{ab}{\left(a-b\right)^2}}=\left(a-b\right)\cdot\frac{\sqrt{ab}}{a-b}=\sqrt{ab}\)

2) \(\frac{x-y}{y}\cdot\sqrt{\frac{y^4}{x^2-2xy+y^2}}=\frac{x-y}{y}\cdot\frac{\sqrt{y^4}}{\sqrt{\left(x-y\right)^2}}=\frac{x-y}{y}\cdot\frac{y^2}{x-y}=y\)