Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{3-2\sqrt{5}+3}=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1=1\)
Bạn rút từ trong căn trước:
căn của 29-12 căn 5 ta biến đổi thành:
(2 căn 5 ) bình- 2.2 căn 5. 3 + 9
= ( 2 căn 5 -3 )2
rút gọn rồi ta sẽ ra kết quả
=\(\sqrt{5}-\sqrt{3-\sqrt{20-2.2\sqrt{5}.3+9}}\)
=\(\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
=\(\sqrt{5}-\sqrt{3-l2\sqrt{5}-3l}\)
=\(\sqrt{5}-\sqrt{3-2\sqrt{5}+3}\)(vi \(2\sqrt{5}-3\)>0)
=\(\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
=\(\sqrt{5}-\sqrt{5-2\sqrt{5}+1}\)
=\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
=\(\sqrt{5}-l\sqrt{5}-1l\)
=\(\sqrt{5}-\sqrt{5}+1\)(vi \(\sqrt{5}-1\)>0)
=1
a) \(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{16-2.4\sqrt{2}+2}}}\)
\(=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+\sqrt{\left(4-\sqrt{2}\right)^2}}}=\sqrt{6-2\sqrt{\sqrt{2}+\sqrt{12}+4-\sqrt{2}}}\)\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}=\sqrt{6-2\sqrt{\left(\sqrt{3}+1\right)^2}}=\sqrt{6-2\left(1+\sqrt{3}\right)}}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}=1+\sqrt{3}\)
b) Tương tự a) đ/s =5