Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{1}{\left(a-b\right)\left(a-c\right)}\)\(-\dfrac{1}{\left(a-b\right)\left(b-c\right)}\)\(+\dfrac{1}{\left(a-c\right)\left(b-c\right)}\)
<=>A=\(\dfrac{b-c-\left(a-c\right)+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
<=> A=\(\dfrac{0}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)<=> A=0
Đặt: \(a-b=x\)
\(a-c=y\)
\(b-c=z\)
Ta có: \(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\dfrac{1}{xy}-\dfrac{1}{xz}+\dfrac{1}{yz}\)
\(=\dfrac{xyz^2-xy^2z+x^2yz}{x^2y^2z^2}\)
\(=\dfrac{xyz\left(z-y+x\right)}{x^2y^2z^2}\)
\(=\dfrac{z-y+x}{xyz}\)
Thay \(a-b=x;a-c=y;b-c=z\) vào biểu thức \(\dfrac{z-y+x}{xyz}\), ta được:
\(\dfrac{\left(b-c\right)-\left(a-c\right)+\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= \(\dfrac{b-c-a+c+a-b}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
= 0
Vậy:\(A=\dfrac{1}{\left(a-b\right)\left(a-c\right)}+\dfrac{1}{\left(b-a\right)\left(b-c\right)}+\dfrac{1}{\left(c-a\right)\left(c-b\right)}=0\)
1)\(\dfrac{c-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}+\dfrac{a-c}{\left(b-a\right)\left(b-c\right)\left(a-c\right)}+\dfrac{b-a}{\left(b-a\right)\left(c-b\right)\left(c-a\right)}=\dfrac{c-b+a-c+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
2b)\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
<=> \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
<=> (ab+bc+ca)(a+b+c)=abc
<=> (ab+bc+ca)(a+b+c)-abc=0
<=> (a+b)(b+c)(c+a) = 0
<=> a+b=0 hoặc b+c=0 hoặc c+a=0
<=> a=-b hoặc b=-c hoặc c = -a
sau đó thay vào cái cần c/m
a)\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
=\(2x^3-3x-5x^3-x^2+x^2=-3x^3-3x\)
b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24=-11x+24\)
c) \(\dfrac{1}{2}x^2\left(6x-3\right)-x\left(x^2+\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+4\right)\)
\(=3x^3-\dfrac{3}{2}x^2-x^3-\dfrac{1}{2}x+\dfrac{1}{2}x+2=2x^3-\dfrac{3}{2}x^2+2\)
Lời giải:
\(\text{VT}=\frac{1}{a(a-b)(a-c)}+\frac{1}{b(b-c)(b-a)}+\frac{1}{c(c-a)(c-b)}\)
\(=\frac{bc(c-b)}{abc(a-b)(b-c)(c-a)}+\frac{ac(a-c)}{abc(a-b)(b-c)(c-a)}+\frac{ab(b-a)}{abc(a-b)(b-c)(c-a)}\)
\(=\frac{bc(c-b)+ac(a-c)+ab(b-a)}{abc(a-b)(b-c)(c-a)}\) (1)
Xét \(bc(c-b)+ac(a-c)+ab(b-a)=bc(c-b)-ac[(c-b)+(b-a)]+ab(b-a)\)
\(=(c-b)(bc-ac)+(b-a)(ab-ac)=c(c-b)(b-a)+a(b-a)(b-c)\)
\(=(c-b)(b-a)(c-a)=(a-b)(b-c)(c-a)\) (2)
Từ \((1),(2)\Rightarrow \text{VT}=\frac{(a-b)(b-c)(c-a)}{abc(a-b)(b-c)(c-a)}=\frac{1}{abc}\)
Ta có đpcm.
\(T=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Do a+b+c =0 nên => a+b = (-c) => \(\left(a+b\right)^2=\left(-c\right)^2=>a^2+2ab+b^2=c^2\)
\(=>a^2+b^2-c^2=-2ab\)
Làm tương tự trên ta có : \(b^2-c^2-a^2=2ac;\)
\(a^2-b^2-c^2=2bc;\)
\(=>T=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}=\dfrac{a^3+b^3+c^3}{2abc}\)
Với a+b+c = 0 thì \(a^3+b^3+c^3=3abc\) (bạn tự chứng minh hằng đẳng thức mở rộng nhé);
\(=>T=\dfrac{3abc}{2abc}=\dfrac{3}{2}=1,5\)
CHÚC BẠN HỌC TỐT.....
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-a\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{c-b}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{b-a}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{c-b+b-a+a-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(=\dfrac{b\left(b-c\right)-a\left(a-c\right)}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\dfrac{b^2-bc-a^2+ac}{ab\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\dfrac{-\left(a-b\right)\left(a+b\right)+c\left(a-b\right)}{ab\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\dfrac{-a-b+c}{ab\left(a-c\right)\left(b-c\right)}\)