Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 317=a; 111=b
Theo đề, ta có: \(2\dfrac{1}{a}\cdot\dfrac{3}{b}-\dfrac{a-1}{a}\cdot\dfrac{1}{b}-\dfrac{4}{ab}\)
\(=\dfrac{3\left(2a+1\right)}{ab}-\dfrac{a-1}{ab}-\dfrac{4}{ab}\)
\(=\dfrac{6a+3-a+1-4}{ab}=\dfrac{5a}{ab}=\dfrac{5}{b}=\dfrac{5}{111}\)
1) Đặt \(\frac{1}{317}=a;\frac{3}{111}=b\) thế vào mà làm thôi
mấy câu sau tương tự
Đặt S= \(2\dfrac{1}{315}.\dfrac{1}{651}-\dfrac{1}{105}.3\dfrac{650}{651}-\dfrac{4}{315.651}+\dfrac{4}{105}\)
= \(\left(2+\dfrac{1}{315}\right).\dfrac{1}{651}-\dfrac{3}{315}.\left(3+\dfrac{651-1}{651}\right)-\dfrac{4}{315.651}+\dfrac{12}{315}\)
= \(\left(2+\dfrac{1}{315}\right).\dfrac{1}{651}-\dfrac{3}{315}.\left(3+1-\dfrac{1}{651}\right)-\dfrac{4}{315.651}+\dfrac{12}{315}\)
Đặt \(\dfrac{1}{315}=a,\dfrac{1}{651}=b\)
\(\Rightarrow S=\left(2+a\right).b-3a.\left(4-b\right)-4ab+12a\)
\(=2b+ab-12a+3ab-4ab+12a\)
\(=2b=\dfrac{2}{651}\)
Đặt \(\dfrac{1}{315}=x,\dfrac{1}{651}=y\)
\(\Rightarrow A=\left(2+x\right)y-3x\left(4-y\right)-4xy+12x\)
\(=2y+xy-12x+3xy-4xy+12x\)
\(=2y\)
Thay \(y=\dfrac{1}{651}\Rightarrow A=\dfrac{2}{651}\)
Vậy...
Đặt \(B=\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{n}\)
Đặt \(A=\dfrac{n-1}{1}+\dfrac{n-2}{2}+...+\dfrac{n-\left(n-2\right)}{n-2}+\dfrac{n-\left(n-1\right)}{n-1}\)
\(=\dfrac{n}{1}+\dfrac{n}{2}+...+\dfrac{n}{n-2}+\dfrac{n}{n-1}-1-1-...-1\)
\(=n+\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}-\left(n-1\right)\)
\(=\dfrac{n}{2}+\dfrac{n}{3}+...+\dfrac{n}{n-1}+\dfrac{n}{n}=n\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2}\right)=n.B\)
\(A:B=n\)
Đặt \(A=2\dfrac{1}{317}.\dfrac{3}{111}-\dfrac{316}{317}.\dfrac{1}{111}-\dfrac{4}{317.111}\)
\(=\left(2+\dfrac{1}{317}\right).\dfrac{3}{111}-\left(1-\dfrac{1}{317}\right).\dfrac{1}{111}-4.\dfrac{1}{317}.\dfrac{1}{111}\)
\(=6.\dfrac{1}{111}+3.\dfrac{1}{317}.\dfrac{1}{111}-\dfrac{1}{111}+\dfrac{1}{317}.\dfrac{1}{111}-4.\dfrac{1}{317}.\dfrac{1}{111}\)
Đặt \(a=\dfrac{1}{111};b=\dfrac{1}{317}\). Khi đó
\(A=6a+3ab-a+ab-4ab=5a=\dfrac{5}{111}\)
Vậy A=\(\dfrac{5}{111}\)