Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)}^2=4\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|=4\)
Ta có : \(\left|\sqrt{x-4}-2\right|= \left|2-\sqrt{x-4}\right|\)
Áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-4}+2\ge0\\2-\sqrt{x-4}\ge0\end{matrix}\right.\Rightarrow x\le8\)
Kết hợp với điều kiện ban đầu \(\Rightarrow4\le x\le8\)
a:\(M=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
\(=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b: \(M=2\sqrt{\sqrt{15+\sqrt{6}}-4}\simeq0.088\)
Bài 1:
a) \(\sqrt{1-x^2}\)có nghĩa \(\Leftrightarrow\)\(1-x^2\ge0\)
\(\Leftrightarrow\)\(x^2\le1\)
\(\Leftrightarrow\)\(\left|x\right|\le1\)
b) \(\sqrt{\frac{x-2}{x-3}}\)có nghĩa \(\Leftrightarrow\)\(\frac{x-2}{x-3}\ge0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x>3\\x\le2\end{cases}}\)
\(A=\left(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}}\right)\sqrt{x+\sqrt{x^2-32}}\) với \(x\ge4\sqrt{2}\)
Lời giải:
\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)
\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)
Lời giải:
\(A\sqrt{2}=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{2x+\sqrt{(x-4\sqrt{2})(x+4\sqrt{2})}}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})\sqrt{(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})^2}\)
\(=(\sqrt{x-4\sqrt{2}}-\sqrt{x+4\sqrt{2}})(\sqrt{x-4\sqrt{2}}+\sqrt{x+4\sqrt{2}})\)
\(=(\sqrt{x-4\sqrt{2}})^2-(\sqrt{x+4\sqrt{2}})^2=(x-4\sqrt{2})-(x+4\sqrt{2})=-8\sqrt{2}\)
\(a.A=\dfrac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}=\dfrac{\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}}{\sqrt{2}}=\dfrac{\sqrt{x-2}-\sqrt{2}}{\sqrt{2}}\) \(b.A=\dfrac{\sqrt{x-2\sqrt{2x-4}}}{\sqrt{2}}=\dfrac{\sqrt{x-2-2.\sqrt{2}.\sqrt{x-2}+2}}{\sqrt{2}}=\dfrac{\sqrt{2}-\sqrt{x-2}}{\sqrt{2}}\)
\(\sqrt{x-1-2\sqrt{x-1}+1}\)+\(\sqrt{x-1+4\sqrt{x-1}+4}\) (\(x\ge1\)
=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}-2\right|\)
dat \(\sqrt{x-1}=t\left(t\ge0\right)\)
ta co \(\left|t-1\right|+\left|t-2\right|\)
t |t-1| |t-2| 1 2 0 0 + - - +
nenta co voi0<= t<1 \(1-t+2-t=3-t=3-2\sqrt{x-1}\)
voi 1\(\le t\le2\) \(t-1+2-t=3\)
voi t>2 \(t-1+t-2=2t-3=2\sqrt{x-1}-3\)
b,\(\sqrt{x-4-4\sqrt{x-4}+4}\) =\(\left|\sqrt{x-4}-2\right|\)
cách khác nhé:
ĐK: \(x\ge4\)
\(B=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(=\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}\)
\(=\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}\)
\(=\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|\)
Nếu \(4\le x< 8\)thì: \(B=\sqrt{x-4}+2+2-\sqrt{x-4}=4\)
Nếu \(x\ge8\)thì: \(B=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
\(B=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\)
\(\Leftrightarrow B^2=\left(\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)^2\)
\(=x+4\sqrt{x-4}+x-4\sqrt{x-4}+2\sqrt{\left(x+4\sqrt{x-4}\right)\left(x-4\sqrt{x-4}\right)}\)
\(=2x+2\sqrt{x^2-\left(4\sqrt{x-4}\right)^2}\)
\(=2x+2\sqrt{x^2-16\left(x-4\right)}=2x+2\sqrt{x^2-16x+64}\)
\(=2x+2\sqrt{\left(x-8\right)^2}=2x+2\left|x-8\right|\)
Nếu \(x-8\ge0\Rightarrow x\ge8\) thì 2x + 2(x-8) = 2x + 2x - 16 = 4x -16 = 4(x-4)
Nếu x - 8 < 0 => x < 8 thì 2x + 2(8 - x) = 2x + 16 - 2x = 0x + 16