\(\)-10\(\)+10\(^{ }\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: TH1: x<1

A=1-x+2-x=3-2x

TH2; 1<=x<2

A=x-1+2-x=1

TH3: x>=2

A=x-1+x-2=2x-3

b: TH1: x<5/2

B=5-2x+3-x+x-2=-2x+6

TH2: 5/2<=x<3

B=2x-5+3-x+x-2=2x-4

TH3: x>=3

B=x-3+2x-5+x-2=4x-10

c: TH1: x<-3/2

C=-2x-3-(5-x)+2x

=-2x-3-5+x+2x

=x-8

TH2: -3/2<=x<5

C=2x+3-(5-x)+2x=4x+3-5+x=5x-2

TH3: x>=5

C=2x+3-(x-5)+2x=4x+3-x+5=3x+8

7 tháng 4 2017

a) Ta có:

\(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k\left(90-10^2+10\right)\)

\(=10^k.0=0\)

b) Ta có:

\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=2,5.10.5^{n-3}+5^n-6.5^{n-1}\)

\(=5.5.5^{n-3}+5^n-6.5^{n-1}\)

\(=5^2.5^{n-3}+5^n-6.5^{n-1}\)

\(=5^{n-3+2}+5^n-6.5^{n-1}\)

\(=5^{n-1}\left(1+5-6\right)\)

\(=5^{n-1}.0=0\)

7 tháng 4 2017

a) Rút gọn biểu thức:

\(90\times10^k-10^{k+2}+10^{k+1}=90\times10^k-10^k\times10^2+10^k\times10\) \(=10^k\times\left(90-10^2+10\right)\) \(=10^k\times\left(90-100+10\right)\) \(=10^k\times0=0\)

b) Rút gọn biểu thức:

\(2,5\times5^{n-3}\times10+5^n-6\times5^{n-1}=2,5\times\dfrac{5^n}{5^3}\times10+5^n-6\times\dfrac{5^n}{5}\) \(=2,5\times\dfrac{5^n}{125}\times10+5^n-\dfrac{6}{5}\times5^n\) \(=0,2\times5^n+5^n-1,2\times5^n\) \(=5^n\times\left(0,2+1-1,2\right)=5^n\times0=0\)

Mk nhầm nha câu đầu chỉ có 1 cái x-1 + x -2 thôi ko có cái đằng sau nhé ! giá trị tuyệt đối thì vẫn giữ nguyên !

10 tháng 4 2018

a) \(10^{n+1}-6.10^n\)

\(=10^n.10-6.19^n\)

\(=10^n.\left(10-6\right)\)

\(=10^n.4\)

b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)

\(=2^n.2^3+2^n.2^2-2^n.2+2^n.1\)

\(=2^n.\left(2^3+2^2-2+1\right)\)

\(=2^n.11\)

c) \(90.10^k-10^{k+2}+10^{k+1}\)

\(=90.10^k-10^k.10^2+10^k.10\)

\(=10^k.\left(90-10^2+10\right)\)

\(=0\)

d) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)

\(=\dfrac{2,5.5^n.10}{5^3}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n}{5}+5^n-\dfrac{6.5^n}{5}\)

\(=\dfrac{5^n+5^{n+1}-6.5^n}{5}=\dfrac{5^n+5^n.5-6.5^n}{5}=\dfrac{5^n\left(1+5-6\right)}{5}=\dfrac{0}{5}=0\)

9 tháng 8 2016

a) 5A = 5 + 5^2 + 5^3 + 5^4 +...+ 5^51

=> 5A - A = 4A = 5^51 - 1

=> A = \(\frac{5^{51}-1}{4}\)

b) 3B = 3^100 - 3^99 -...- 3

=> 3B - B = 2B = 3^100 - 2.3^99 + 1

=> B = \(\frac{3^{100}-2\times3^{99}+1}{2}\)

9 tháng 8 2016

a, 1+5+52+.....+550

=> 5(1+5+52+.....+550)=5+52+53.....+551

=>4(1+5+52+.....+550)=551-1

=>1+5+52+.....+550=(551-1):4

b,399-398-...-3-1

=399-(398+...+3+1)

=399-(399-1):2

2 tháng 3 2018

1. 

\(A=\sqrt{1+2+...+\left(n-1\right)+n+\left(n-1\right)+...+2+1}\)

\(=\sqrt{\frac{\left(n-1\right).n}{2}\cdot2+n}=\sqrt{n^2-n+n}=\sqrt{n^2}=n\)

2.

\(A=\frac{x^2-3}{x+2}=\frac{x\left(x+2\right)-3}{x+2}=\frac{x^2+2x-2x-3}{x+2}=x+\frac{-2x-3}{x+2}\)

\(=x+\left(-1\right)+\frac{1}{x+2}\le\frac{1}{1}\)

Vậy GTLN của A = 1 tại x = -1