Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét tam giác ABD cân tại A (vì AB = AD) ta có:
• \(\widehat {AB{\rm{D}}} = \widehat {A{\rm{D}}B} = {40^o}\)
• \(\widehat A + \widehat {AB{\rm{D}}} + \widehat {A{\rm{D}}B} = {180^o}\)
Suy ra \(\widehat A\)=180°−\(\widehat {AB{\rm{D}}}\)−\(\widehat {A{\rm{D}}B}\)=180°−40°−40°=100°
Ta có \(\widehat {A{\rm{D}}B} + \widehat {B{\rm{D}}C}\)=120° suy ra \(\widehat {B{\rm{D}}C}\)=120°−\(\widehat {A{\rm{D}}B}\)=120°−40°=80°.
* Xét tam giác BCD cân tại C (vì BC = CD) ta có:
• \(\widehat {CB{\rm{D}}} = \widehat {C{\rm{D}}B}\)=80°
• \(\widehat C + \widehat {CB{\rm{D}}} + \widehat {C{\rm{D}}B}\)=180°
Suy ra \(\widehat C\)=180°−\(\widehat {CB{\rm{D}}} - \widehat {C{\rm{D}}B}\)=180°−80°−80°=20°
Ta có: \(\widehat {ABC} = \widehat {AB{\rm{D}}} + \widehat {CB{\rm{D}}}\)=40°+80°=120o
Vậy số đo các góc của tứ giác ABCD là \(\widehat A = {100^o};\widehat {ABC} = {120^o};\widehat C = {20^o}\)
Ta có AD = BD và D ∈ AB nên D là trung điểm của AB;
AE = EC và E ∈ AC nên E là trung điểm của AC.
Xét tam giác ABC có D, E lần lượt là trung điểm của AB và AC, theo định lí Thalès đảo, ta suy ra DE // BC (đpcm).
Ta có \(\widehat A = \widehat {{D_1}}\) mà hai góc này ở vị trí đồng vị nên AB // CD.
Suy ra tứ giác ABCD là hình thang.
Mặt khác hình thang ABCD có \(\widehat A = \widehat B\) nên ABCD là hình thang cân.
Do đó AD = BC (đpcm).
a)
Xét tam giác ABC có MN//BC
`=>(AM)/MB=(AN)/(NC)` (định lí thales)
`=>(6,5)/x=4/2`
`=>x=3,25`
b)
có QH⊥PH (hình vẽ)
FE⊥PH (hình vẽ)
Suy ra EF//HQ (từ vuông góc đến song song)
Xét tam giác PHQ có EF//HQ (cmt)
`=>(PE)/(PH)=(PF)/(PQ)` (định lí thales)
`=>4/x=5/(5+3,5)`
`=>4/x=5/(8,5)`
`=>x=6,8`
a. Do H, K lần lượt là trung điểm cạnh DF, EF
⇒ HK là đường trung bình của tam giác DEF.
⇒ DE = 2 HK = 2 \(\times\) 3 = 6.
b. Do M là trung điểm cạnh AB mà MN // AC (cùng vuông góc với AB)
⇒ MN là đường trung bình của tam giác ABC.
⇒ N là trung điểm của cạnh BC
⇒ y = NB = NC = 5.
Xét tứ giác EFGH có:
\(\) \(\widehat E + \widehat F + \widehat G + \widehat H = {360^o}\)(định lí tổng các góc trong một tứ giác).
Hay \({90^o} + \widehat F + {90^o} + {55^o} = {360^o}\)
Suy ra \(\widehat F\)+235°=360°
Do đó \(\widehat F\)=360°−235°=125°
Vậy \(\widehat F\)=125o
* Hình 3.36a)
Xét tứ giác ABCD có: \(\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\)
100°+80°+100°+\(\widehat D = {360^o}\)
280°+\(\widehat D\)=360°
Suy ra \(\widehat D\)=360°−280°=80°
Tứ giác ABCD có: \(\widehat A = \widehat C\)=100°; \(\widehat B = \widehat D\)=80°
Do đó, tứ giác ABCD là hình bình hành.
* Hình 3.36b)
Xét tứ giác ABCD có: \(\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\)
75°+\(\widehat B\)+75°+90°=360°
240°+\(\widehat B\)=360°
Suy ra \(\widehat B\)=360°−240°=120°
Tứ giác ABCD có: \(\widehat A = \widehat C\)=100° nhưng \(\widehat B \ne \widehat D\)(120°≠90°)
Do đó, tứ giác ABCD không là hình bình hành.
* Hình 3.36c)
Xét tứ giác ABCD có: \(\widehat A + \widehat B + \widehat C + \widehat D = {360^o}\)
70°+110°+\(\widehat C\)+110°=360°
\(\widehat C\)+290°=360o
Suy ra \(\widehat C\)=360°−290°=70°
Tứ giác ABCD có: \(\widehat A = \widehat C\)=70°; \(\widehat B = \widehat D\)=110°
Do đó, tứ giác ABCD là hình bình hành.
Vậy tứ giác ABCD trong Hình 3.36a) và 3.36c) là hình bình hành; tứ giác ABCD trong Hình 3.36b) không là hình bình hành.
* Hình 3.39a)
Tứ giác ABCD có: \(\widehat A = \widehat C;\widehat B = \widehat D \)
Do đó, tứ giác ABCD là hình bình hành.
* Hình 3.39b)
Tứ giác ABCD có: \(\widehat B \ne \widehat D\) (70°≠75°).
Do đó, tứ giác ABCD không là hình bình hành.
* Hình 3.39c)
Đặt \(\widehat {BC{\rm{x}}} = {80^o}\) (như hình vẽ)
Ta có: \(\widehat D = \widehat {BC{\rm{x}}} = {80^o}\) mà hai góc này ở vị trí đồng vị nên AD // BC.
Tứ giác ABCD có:
• AD // BC (chứng minh trên)
• AD = BC (giả thiết)
Do đó, tứ giác ABCD là hình bình hành.
Vậy tứ giác ABCD trong Hình 3.39a) và 3.39c) là hình bình hành; tứ giác ABCD trong Hình 3.39b) không là hình bình hành.
Vì tứ giác ABCD là hình bình hành nên AB // CD hay AM // DN.
Suy ra \(\widehat {{M_1}} = \widehat {{D_2}}\)(hai góc so le trong)
Mà \(\widehat {{D_1}} = \widehat {{D_2}}\) (vì DM là tia phân giác \(\widehat {A{\rm{D}}C}\)).
Do đó \(\widehat {{M_1}} = \widehat {{D_1}}\) nên tam giác ADM cân tại A.
Chứng minh tương tự, ta có tam giác BCN cân tại C.
Vì \(\widehat {{B_1}} = \widehat {{B_2}};\widehat {{D_1}} = \widehat {{D_2}}\) (vì DM, BN lần lượt là tia phân giác của \(\widehat {A{\rm{D}}C};\widehat {ABC}\)).
Mà \(\widehat {A{\rm{D}}C} = \widehat {ABC}\) (vì tứ giác ABCD là hình bình hành).
Do đó \(\widehat {{B_1}} = \widehat {{B_2}} = \widehat {{D_1}} = \widehat {{D_2}}\)
Tam giác ADM cân tại A, tam giác BCN cân tại C.
Mà \(\widehat {{B_1}} = \widehat {{D_2}}\)nên \(\widehat {{M_1}} = \widehat {{N_2}}\)suy ra \(\widehat {{M_1}} = \widehat {{N_2}}\)
Tứ giác BMDN có \(\widehat {{B_1}} = \widehat {{D_2}};\widehat {{M_2}} = \widehat {{N_1}}\) nên tứ giác BMDN là hình bình hành.
Suy ra DM // BN hay HE // GF.
Tam giác ADM cân tại A có AH là đường phân giác nên AH cũng là đường cao.
Suy ra \(\widehat {AHE} = {90^o}\) nên \(\widehat {EHG} = {90^o}\)
Mà HE // GF suy ra \(\widehat {AGF} = {90^o}\) (hai góc đồng vị).
Tương tự, ta cũng chứng minh được: \[\widehat {HEF} = {90^o};\widehat {GF{\rm{E}}} = {90^o}\]
Tứ giác EFGH có \(\widehat {EHG} = {90^o};\widehat {AGF} = {90^o};\widehat {{\rm{HEF}}} = {90^o}\)
Do đó tứ giác EFGH là hình chữ nhật.
Xét \(\Delta HAE\) và \(\Delta FBE\) ta có:
\(AH = BF\) (gt)
\(\widehat {{\rm{HAE}}} = \widehat {{\rm{FBE}}} = 90^\circ \) (gt)
\(AE = BE\) (gt)
Suy ra \(\Delta HAE = \Delta FBE\) (c-g-c)
Suy ra \(HE = EF\)
Chứng minh tương tự ta có: \(EF = GF\); \(GF = GH\); \(GH = HE\)
Suy ra \(HE = EF = FG = GH\)
Suy ra \(EFGH\) là hình thoi