K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(3x+3+\sqrt{x^3-x+1}-1=0\)

\(3\left(x+1\right)+\frac{x\left(x+1\right)\left(x-1\right)}{\sqrt{x^3-x+1}}=0\)

\(\left(x+1\right)\left(3+\frac{x\left(x-1\right)}{\sqrt{x^3-x+1}}\right)=0\)

Đk :\(-1\le x\le0,x\ge1\)

Kết hợp điều kiện ta được \(\left(3+\frac{x\left(x-1\right)}{\sqrt{x^3-x+1}}\right)\ge0\)

vậy  x  =  - 1

1: \(\sqrt{\dfrac{1}{200}}=\dfrac{\sqrt{2}}{20}\)

2: \(\dfrac{5}{1-\sqrt{6}}=-1-\sqrt{6}\)

3: \(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{1+\sqrt{2}}\)

\(=\dfrac{1+\sqrt{2}-1+\sqrt{2}}{-1}\)

\(=-2\sqrt{2}\)

2: Ta có: \(\sqrt{16-6\sqrt{7}}\cdot\left(3+\sqrt{7}\right)\)

\(=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)\)

=9-7

=2

3: Ta có: \(\left(\sqrt{6}+\sqrt{14}\right)\cdot\sqrt{5-2\sqrt{21}}\)

\(=\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

=7-3

=4

27 tháng 9 2021

\(1,=\sqrt{\left(5+2\sqrt{6}\right)^2}-\sqrt{\left(3-\sqrt{6}\right)^2}=5+2\sqrt{6}-3+\sqrt{6}=2+3\sqrt{6}\\ 2,=\sqrt{\left(3-\sqrt{7}\right)^2}\left(3+\sqrt{7}\right)=\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)=9-7=2\\ 3,=\left(\sqrt{3}+\sqrt{7}\right)\sqrt{10-2\sqrt{21}}=\left(\sqrt{3}+\sqrt{7}\right)\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\\ =\left(\sqrt{7}+\sqrt{3}\right)\left(\sqrt{7}-\sqrt{3}\right)=7-3=4\\ 4,=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{6+2\sqrt{5}}+\sqrt{4-2\sqrt{3}}\right)\\ =\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+1+\sqrt{3}-1\right)\\ =\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

\(5,\\ =\sqrt{\left(3\sqrt{3}-5\right)^2}+\sqrt{\left(5-2\sqrt{3}\right)^2}=3\sqrt{3}-5+5-2\sqrt{3}=\sqrt{3}\\ 6,=\sqrt{13-4\sqrt{10}}-\sqrt{53+12\sqrt{10}}\\ =\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}-\sqrt{\left(3\sqrt{5}-2\sqrt{2}\right)^2}\\ =2\sqrt{2}-\sqrt{5}-3\sqrt{5}+2\sqrt{2}=4\sqrt{2}-4\sqrt{5}\)

8 tháng 3 2018

Gọi số thứ nhất là x

\(\Rightarrow\)Số thứ hai là 19-x

Theo đề bài ta có phương trình:

x2+(19-x)2=185

\(\Leftrightarrow x^2+361-38x+x^2=185\)

\(\Leftrightarrow2x^2-38x+361-185=0\)

\(\Leftrightarrow2x^2-38x+176=0\)

\(\Leftrightarrow x^2-19x+88=0\)

\(\Leftrightarrow x^2-11x-8x+88=0\)

\(\Leftrightarrow x\left(x-11\right)-8\left(x-11\right)=0\)

\(\Leftrightarrow\left(x-11\right)\left(x-8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-11=0\\x-8=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=11\\x=8\end{cases}}\)

Vậy số thứ nhất là 8, số thứ hai là 19-8=11 hoặc số thứ nhất là 11, số thứ hai là 19-11=8

7 tháng 10 2015

\(=\sqrt{3\left(x^2-2x+1\right)+25}\supseteq\sqrt{3\left(x+1\right)^2+25}\supseteq5\)

min=5 <=>x=-1

7 tháng 10 2015

\(\text{Đặt }A=\sqrt{3x^2-6x+28}=\sqrt{3x^2-6x+3+25}\)

\(=\sqrt{3.\left(x^2-2x+1\right)+25}=\sqrt{3.\left(x-1\right)^2+25}\)

\(\Rightarrow A^2=3.\left(x-1\right)^2+25\ge25\Rightarrow A\ge\sqrt{25}=5\)

Dấu "=" xảy ra khi : x=1

Vậy GTNN của A là 5 tại x=1

27 tháng 6 2019

cái đề đâu bn

23 tháng 9 2021

Áp dụng tslg của góc nhọn trong tam giác ABH vuông tại H:

\(sinB=\dfrac{AH}{AB},cosB=\dfrac{BH}{AB},tanB=\dfrac{AH}{BH},cotB=\dfrac{BH}{AH}\)

Áp dụng tslg của góc nhọn trong tam giác AHC vuông tại H :

\(sinC=\dfrac{AH}{AC},cosC=\dfrac{HC}{AC},tanC=\dfrac{AH}{HC},cotC=\dfrac{HC}{AH}\)

23 tháng 9 2021

\(\sin B=\dfrac{AH}{AB};\cos B=\dfrac{BH}{AB};\tan B=\dfrac{AH}{BH};\cot B=\dfrac{BH}{AH}\\ \sin C=\dfrac{AH}{AC};\cos C=\dfrac{CH}{AC};\tan C=\dfrac{AH}{HC};\cot C=\dfrac{HC}{AH}\)

23 tháng 9 2021

\(\tan B=\dfrac{AC}{AB}=\dfrac{5}{12}\Rightarrow AC=\dfrac{5\cdot6}{12}=2,5\left(cm\right)\\ BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+2,5^2}=6,5\left(cm\right)\)

23 tháng 9 2021

Áp dụng tslg của góc nhọn trong tam giác ABC vuông tại A:

\(tanB=\dfrac{AC}{AB}=\dfrac{5}{12}\)

\(\Rightarrow\dfrac{AC}{6}=\dfrac{5}{12}\Rightarrow AC=2,5\left(cm\right)\)

Xét tam giác ABC vuông tại A có:

\(BC^2=AB^2+AC^2\left(Pytago\right)\)

\(\Rightarrow BC^2=6^2+\left(2,5\right)^2=42,25\Rightarrow BC=6,5\left(cm\right)\)