Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\frac{3}{x\left(x^2+2x+4\right)}\)(điều kiện: \(x\ne\left\{0;2\right\}\)
ĐK: \(x\ne\left\{0;2\right\}\)
Ta có: \(3x^2-12x+12\)\(=3\left(x^2-4x+4\right)=3\left(x-2\right)^2\) (1)
\(x^4-8x\)\(=\left(x-2\right)\left(x^3+2x^2+4x\right)\) (chỗ này mình làm hơi tắt xíu,bạn tự giải ra chi tiết nha)
\(=x\left(x-2\right)\left(x^2+2x+4\right)\) (2)
Từ (1) và (2),ta có: \(\frac{3x^2-12x+12}{x^4-8x}=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}\)\(=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
\(x^3-x^2-14x+24\)
\(=x^3-2x^2+x^2-2x-12x+24\)
\(=x^2\left(x-2\right)+x\left(x-2\right)-12\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2+x-12\right)\)
\(=\left(x-2\right).\left[x^2+4x-3x-12\right]\)
\(=\left(x-2\right).\left[x\left(x+4\right)-3\left(x+4\right)\right]\)
\(=\left(x-2\right)\left(x+4\right)\left(x-3\right)\)
\(x^4+x^3+2x-4\)
\(=x^4-x^3+2x^3-2x^2+2x^2-2x+4x-4\)
\(=x^3\left(x-1\right)+2x^2\left(x-1\right)+2x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^3+2x^2+2x+4\right)\)
\(=\left(x-1\right).\left[x^2\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+2\right)\)
\(8x^4-2x^3-3x^2-2x-1\)
\(=8x^4-8x^3+6x^3-6x^2+3x^2-3x+x-1\)
\(=8x^3\left(x-1\right)+6x^2\left(x-1\right)+3x\left(x-1\right)+x-1\)
\(=\left(x-1\right)\left(8x^3+6x^2+3x+1\right)\)
\(=\left(x-1\right)\left[\left(8x^3+1\right)+\left(6x^2+3x\right)\right]\)
\(=\left(x-1\right)\left[\left(2x+1\right)\left(4x^2-2x+1\right)+3x\left(2x+1\right)\right]\)
\(=\left(x-1\right)\left(2x+1\right)\left(4x^2+x+1\right)\)
\(3x^2-7x+2\)
\(=3x^2-6x-x+2\)
\(=3x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(3x-1\right)\)
Chúc bạn học tốt.
\(g,x^2-2xy+y^2-9z^2=\left(x-y\right)^2-\left(3z\right)^2\)\(=\left(x-y+3z\right)\left(x-y-3z\right)\)
\(h,5x^4-20x^2=5x^2\left(x^2-4\right)=5x^2\left(x-2\right)\left(x+2\right)\)
\(i,7x^2-7y^2-14x+14y=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=\left(x-y\right)\left(7x+7y-14\right)=7\left(x-y\right)\left(x+y-2\right)\)
\(k,x^2+8x+3x+24=x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x+3\right)\)
\(m,x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(n,x^6-y^6=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)=\left(x-y\right)\left(x+y\right)\left(x^4+x^2y^2+y^4\right)\)
3{x-2}2/x{x-2}{x2+2x+4}=3{x-2}/x2+2x+4=-3/x+2
nho tick minh nha
a) \(x^4+3x^3-7x^2-27x-18\)
\(=\left(x^4+3x^3+2x^2\right)-\left(9x^2-27x-18\right)\)
\(=x^2\left(x^2+3x+2\right)-9\left(x^2+3x+2\right)=\left(x^2+x+2x+2\right)\left(x^2-9\right)\)
\(=\left(x+1\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
b) \(x^4+5x^3-7x^2-41x-30\)
\(=\left(x^4+2x^3-15x^2\right)+\left(3x^3+6x^2-45x\right)+\left(2x^2+4x-30\right)\)
\(=x^2\left(x^2+2x-15\right)+3x\left(x^2+2x-15\right)+2\left(x^2+2x-15\right)\)
\(=\left(x^2+2x-15\right)\left(x^2+3x+2\right)=\left(x^2+5x-3x-15\right)\left(x^2+x+2x+2\right)\)
\(=\left(x+5\right)\left(x-3\right)\left(x+1\right)\left(x+2\right)\)
c) \(x^6-14x^4+49x^2-36\)
\(=\left(x^6-9x^4\right)+\left(-5x^4+45x^2\right)+\left(4x^2-36\right)\)
\(=x^4\left(x^2-9\right)-5x^2\left(x^2-9\right)+4\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(x^4-5x^2+4\right)=\left(x^2-9\right)\left(x^4-4x^2-x^2+4\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\left(x-3\right)\left(x+3\right)\)
a)\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x^3-2^3\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)