Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Đúng)
Vậy \(a+b\ge2\sqrt{ab}\)
P/S: Ko chắc , e ms lớp 7
Ta có:\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\left(ĐPCM\right)\)
a, \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
b,\(x^2+2xy+y^2+x^2-y^2=\left(x+y\right)^2+\left(x-y\right)\left(x+y\right)\)\(=\left(x+y\right)\left(x+y+x-y\right)=2x\left(x+y\right)\)
a) = \(\left(\sqrt{x}+\sqrt{2}\right)\left(\sqrt{x}-\sqrt{2}\right)\)
b) \(\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)\)
c) = \(4-\left(-x\right)=\left(2-\sqrt{-x}\right)\left(2+\sqrt{-x}\right)\)
d) \(=\left(\sqrt{\text{a}}\text{+}\sqrt{\text{b}}\right)^2\)
\(\sqrt{a^2+ab+2b^2}=\sqrt{\left(\frac{3}{4}a+\frac{5}{4}b\right)^2+\frac{7}{16}\left(a-b\right)^2}\ge\sqrt{\left(\frac{3}{4}a+\frac{5}{4}b\right)^2}=\frac{3a+5b}{4}\)
Tương tự \(\sqrt{b^2+2c^2+bc}\ge\frac{3b+5c}{4};\sqrt{c^2+2a^2+ca}\ge\frac{3c+5a}{4}\)
\(\Rightarrow\sqrt{a^2+ab+2b^2}+\sqrt{b^2+2c^2+bc}+\sqrt{c^2+2a^2+ca}\ge\frac{3a+5b+3b+5c+3c+5a}{4}\)
\(=2\left(a+b+c\right)\left(đpcm\right)\)
Làm bài này một hồi chắc bay não:v
Bài 1:
a) Áp dụng BĐT AM-GM:
\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b = c.
b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.
Bài 2:
a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v
b) Theo BĐT Bunhicopxki:
\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)
Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)
Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:
\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)
\(2.\left(a+b\right)\ge a+2\sqrt{ab}+b\)(a,b >=0)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)(luôn đúng với mọi a,b >=0)
Vì BĐT cuối đúng nên BĐT đầu đúng
ta có:\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\sqrt{\left(a+b\right)^2}\ge\sqrt{4ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
Vì a,b là các số không âm nên \(\sqrt{ab}=\sqrt{a}.\sqrt{b}\)
\(\Leftrightarrow a+b+a+b\ge a+2\sqrt{a}.\sqrt{b}+b\)
\(\Leftrightarrow2\left(a+b\right)\ge\left(\sqrt{a}+\sqrt{b}\right)^2\left(ĐPCM\right)\)
mời anh giúp em câu này
x3+6x+12x +8x3 -21=0
đó 2 câu này thôi
\(\sqrt{a}b\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)\)1)
\(\left(\sqrt{a}b+1\right)\left(\sqrt{a}+1\right)\)
\(ab+b\sqrt{a+\sqrt{a+1}}\)
=\(b\sqrt{a\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)}\)
=\(\left(\sqrt{a}+1\right)\left(b\sqrt{a}+1\right)\)
click đúng cho mk nha