\(2xy-x^2+3y^2-4y+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

\(2xy-x^2+3y^2-4y+1\)

\(=-\left(x^2-2xy+y^2\right)+4y^2-4y+1\)

\(=-\left(x-y\right)^2+\left(2y-1\right)^2\)

\(=\left(2y-1+x-y\right)\left(2y-1-x+y\right)\)

\(=\left(y+x-1\right)\left(3y-x-1\right)\)

26 tháng 8 2020

Bài làm:

1) Ta có: \(2x^2+5xy+2y^2\)

\(=\left(2x^2+4xy\right)+\left(xy+2y^2\right)\)

\(=2x\left(x+2y\right)+y\left(x+2y\right)\)

\(=\left(2x+y\right)\left(x+2y\right)\)

2) Ta có: \(2x^2+2xy-4y^2\)

\(=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)\)

\(=2x\left(x-y\right)+4y\left(x-y\right)\)

\(=2\left(x+2y\right)\left(x-y\right)\)

26 tháng 8 2020

\(1)2x^2+5xy+2y^2=2x^2+4xy+xy+2y^2=\left(2x^2+4xy\right)+\left(xy+2y^2\right)=2x\left(x+2y\right)+y\left(x+2y\right)=\left(2x+y\right)\left(x+2y\right)\)\(2)2x^2+2xy-4y^2=2x^2+4xy-2xy-4y^2=\left(2x^2-2xy\right)+\left(4xy-4y^2\right)=2x\left(x-y\right)+4y\left(x-y\right)=\left(2x+4y\right)\left(x-y\right)\)

27 tháng 12 2019

Cách 1: \(x^2-2xy+y^2+4x-4y-5=\left(y^2-xy+y\right)+\left(-xy+x^2-x\right)+\left(-5y+5x-5\right)\)

\(=y\left(y-x+1\right)-x\left(y-x+1\right)-5\left(y-x+1\right)=\left(y-x+1\right)\left(y-x-5\right)\)

Cách 2: \(x^2-2xy+y^2+4x-4y-5=\left(x^2+y^2+2^2-2xy+4x-4y\right)-9\)

\(=\left(y-x-2\right)^2-3^2=\left(y-x-2-3\right)\left(y-x-2+3\right)=\left(y-x-5\right)\left(y-x+1\right)\)

27 tháng 12 2019
X²-2xy+y²+4x-4y-5 =x²-xy-xy+y²+5x-x-5y+y-5 X.(x-y-1)-y.(x-y-1)+5(x-y-1) =(x-y-1).(x-y+5)
17 tháng 8 2019

\(x^2-2xy+5x-10y\)

\(=x\left(x-2y\right)+5\left(x-2y\right)\)

\(=\left(x+5\right)\left(x-2y\right)\)

\(x^2-2xy+5x-10y\)

\(=\left(x^2-2xy\right)+\left(5x-10y\right)\)

\(=x\left(x-2y\right)+5\left(x-2y\right)\)

\(=\left(x-2y\right)\left(x+5\right)\)

\(x-3\sqrt{x}+\sqrt{xy}-3y\)

\(=\left(x-3\sqrt{x}\right)+\left(\sqrt{xy}-3y\right)\)

\(=\sqrt{x}\left(\sqrt{x}-3\right)+y\left(\sqrt{x}-3\right)\)

\(=\left(\sqrt{x}-3\right)\left(\sqrt{x}+y\right)\)

11 tháng 12 2018

\(x^2+5x+6\)

\(=x^2+3x+2x+6\)

\(=x.\left(x+3\right)+2.\left(x+3\right)=\left(x+3\right).\left(x+2\right)\)

3 tháng 7 2018

1, \(=\left(2y\right)^2-\left(x^2-2x+1\right)=\left(2y\right)^2-\left(x-1\right)^2=\left(2y-x+1\right)\left(2y+x-1\right)\)

2, \(=2\left(x^2-y^2\right)+8\left(x+1\right)=2\left(x+1\right)\left(x-1\right)+8\left(x+1\right)=2\left(x+1\right)\left(x-1+4\right)=2\left(x+1\right)\left(x+3\right)\)

3, \(=\left(x^2+6x+9\right)-\left(2y\right)^2=\left(x+3\right)^2-\left(2y\right)^2=\left(x+3-2y\right)\left(x+3+2y\right)\)

4, \(=\left(x+y\right)^2-1=\left(x+y-1\right)\left(x+y+1\right)\)

30 tháng 9 2018

\(4y^2-x^2+2x-1\)

\(=4y^2-\left(x^2-2x+1\right)\)

\(=\left(2y\right)^2-\left(x-1\right)^2\)

\(=\left(2y-x+1\right)\left(2y+x-1\right)\)

hk tốt

^^

31 tháng 8 2020

a) \(8a^2xy-18b^2xy=2xy\left(4a^2-9b^2\right)=2xy\left(2a-3b\right)\left(2a+3b\right)\)

b) \(32a^2b^2-4=4\left(8a^2b^2-1\right)\)

c) \(x^2-49z^2-4xy+4y^2=\left(x^2-4xy+4y^2\right)-49z^2\)

\(=\left(x-2y\right)^2-\left(7z\right)^2=\left(x-2y+7z\right)\left(x-2y-7z\right)\)

d) \(3x^2+6x+3-3y^2=3\left(x^2+2x+1-y^2\right)=3.\left[\left(x+1\right)^2-y^2\right]\)

\(=3\left(x-y+1\right)\left(x+y+1\right)\)

e) \(12x^2y-12y^3+36xy+27y=3y\left(4x^2-4y^2+12x+9\right)\)

\(=3y\left[\left(4x^2+12x+9\right)-4y^2\right]=3y\left[\left(2x+3\right)^2-\left(2y\right)^2\right]\)

\(=3y\left(2x-2y+3\right)\left(2x+2y+3\right)\)

31 tháng 8 2020

a) 8a2xy - 18b2xy 

= 2xy( 4a2 - 9b2 )

= 2xy( [ ( 2a )2 - ( 3b )2 ]

= 2xy( 2a - 3b )( 2a + 3b )

b) 32a2b2 - 4

= 4( 8a2b2 - 1 )

c) x2 - 49z2 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 49z2

= ( x - 2y )2 - ( 7z )2

= ( x - 2y - 7z )( x - 2y + 7z )

d) 3x2 + 6x + 3 - 3y2

= 3( x2 + 2x + 1 - y2 )

= 3[ ( x2 + 2x + 1 ) - y2 ]

= 3[ ( x + 1 )2 - y2 ]

= 3( x - y + 1 )( x + y + 1 )

e) 12x2y - 12y3 + 36xy + 27y

= 3y( 4x2 - 4y2 + 12x + 9 )

= 3y[ ( 4x2 + 12x + 9 ) - 4y2 ]

= 3y[ ( 2x + 3 )2 - ( 2y )2 ]

= 3y( 2x - 2y + 3 )( 2x + 2y + 3 )

11 tháng 12 2018

\(x^2-3x+xy-3y\)

\(=x\left(x+y\right)-3\left(x+y\right)\)

\(=\left(x+y\right)\left(x-3\right)\)

\(x^2-2xy+y^2-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

\(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x+y\right)\left(x-y+1\right)\)