Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. a) 7x2 - 5x - 2 = 7x2 - 7x + 2x - 2 = 7x(x - 1) + 2(x - 1) = (x - 1).(7x + 2)
2. 5(2x - 1)2 - 3(2x - 1) = 0
<=> (2x - 1).[5(2x - 1) - 3] = 0
<=> (2x - 1).(10x - 8) = 0
<=> (2x - 1) = 0 hoặc (10x - 8) = 0
<=> x = 1/2 hoặc x = 4/5
3. x2 - 4x + 7 = (x2 - 4x + 4) + 3 = (x - 2)2 + 3
Do: (x - 2)2 > hoặc = 0 (với mọi x)
Nên (x - 2)2 + 3 > hoặc = 3 (với mọi x)
Hay (x - 2)2 + 3 > 0 (với mọi x) => đpcm
a)\(7x\left(y-4\right)^2-\left(4-y\right)^3=7x\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2\left(7x-4+y\right)\)
b)\(\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9\left(8-4x\right)\)
\(=\left(4x-8\right)\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)-9\left(4x-8\right)\)
\(=\left(4x-8\right)\left(x^2-x-10\right)=4\left(x-2\right)\left(x^2-x-10\right)\)
a.\(7x.\left(y-4\right)^2-\left(4-y\right)^3\)=\(7x.\left(4-y\right)^2-\left(4-y\right)^3=\left(4-y\right)^2.\left(7x+y-4\right)\)
b.\(\left(4x-8\right).\left(x^2+6\right)-\left(4x-8\right)\left(x+7\right)+9.\left(8-4x\right)\)
=\(\left(4x-8\right)\left(x^2+6-x-7-9\right)=\left(4x-8\right)\left(x^2-x-10\right)\)
Ta có : 5x(x - 2y) + 2(2y - x)2
= 5x(x - 2y) + 2(x - 2y)2 (vì (2y - x)2 = (x - 2y)2 )
= (x - 2y)[5x + 2(x - 2y)]
= (x - 2y)(5x + 2x - 4y)
= (x - 2y)(7x - 4y)
b) 7x(y - 4)2 - (4 - y)3
= 7x(y - 4)2 - (4 - y)2(4 - y)
= 7x(y - 4)2 - (y - 4)2(4 - y)
= (y - 4)2(7x - 4 + y)
c) (4x - 8)(x2 + 6) - (4x - 8)(x + 7) + 9(8 - 4x)
= (4x - 8)(x2 + 6) - (4x - 8)(x + 7) - 9(4x - 8)
= (4x - 8)(x2 + 6 - x - 7 - 9)
= 2(x - 4)(x2 - x - 10)
b) \(x^3-4x^2y+4xy^2-y^3\)
\(=x^3-3x^2y-x^2y+3xy^2+xy^2-y^3\)
\(=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2y-xy^2\right)\)
\(=\left(x-y\right)^3-xy\left(x-y\right)\)
\(=\left(x-y\right)\left[\left(x-y\right)^2-xy\right]\)
\(=\left(x-y\right)\left(x^2-2xy+y^2-xy\right)\)
\(=\left(x-y\right)\left(x^2-3xy+y^2\right)\)
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
a, Đặt A=...=(x+2)(x+6)(x+3)(x+5)-10=(x2+8x+12)(x2+8x+15)-10
Đặt x2+8x+12=y
=>A=y(y+3)-10=y2+3y-10=y2-2y+5y-10=y(y-2)+5(y-2)=(y-2)(y+5)=(x2+8x+12-2)(x2+8x+12+5)=(x2+8x+10)(x2+8x+17)
b, Đặt B=...=x(4x+8)(2x+1)(2x+3)-18=(4x2+8x)(4x2+8x+3)-18
Đặt 4x2+8x=t
=>B=t(t+3)-18=t2+3t-18=t2-3t+6t-18=t(t-3)+6(t-3)=(t-3)(t+6)=(4x2+8x-3)(4x2+8x+6)
a) 4x2 + 4x - 3x = 4x2 +x = x( 4x+1)
b) x2+7x+10= x2+2x+5x+10= x(x+2)+5(x+2)= (x+5)(x+2)
c) x2-x-12= x2 - 4x+3x-12= x(x-4)+3(x-4)=(x+3)(x-4)
d) x2+3x-18=x2+6x-3x-18= x(x+6)-3(x+6)=(x-3)(x+6)
a)\(x^3+4x^2-7x-10=x^3+x^2+3x^2+3x-10x-10=x^2\left(x+1\right)+3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x-10\right)=\left(x+1\right)\left[\left(x^2+5x\right)-\left(2x+10\right)\right]=\left(x+1\right)\left(x+5\right)\left(x-2\right)\)
b) \(x^8+x+1=x^8-x^2+x^2+x+1=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x-1\right)\left(x^3+1\right)+1\right]\)