K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2018

Câu a :

\(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)

Câu b :

\(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=3x\left(x+2\right)\)

Câu c :

\(9\left(x+5\right)^2-\left(x-7\right)^2\)

\(=\left(3x+15\right)^2-\left(x-7\right)^2\)

\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)

\(=\left(2x+22\right)\left(4x+8\right)\)

\(=8\left(x+11\right)\left(x+2\right)\)

a) \(3x\left(x+1\right)^2-5x^2\left(x+1\right)+7\left(x+1\right)\)

\(=\left(x+1\right)\left[3x\left(x+1\right)-5x^2+7\right]\)

\(=\left(x+1\right)\left(3x^2+3x-5x^2+7\right)\)

\(=\left(x+1\right)\left(-2x^2+3x+7\right)\)

\(=-\left(x+1\right)\left(2x^2-3x-7\right)\)

b) \(\left(x+y\right)\left(2x-y\right)-\left(3x-y\right)\left(y-2x\right)\)

\(=\left(x+y\right)\left(2x-y\right)+\left(3x-y\right)\left(2x-y\right)\)

\(=\left(2x-y\right)\left(x+y+3x-y\right)\)

\(=4x\left(2x-y\right)\)

c) \(5u\left(u-v\right)^2+10u^2\left(v-u\right)^2\)

\(=5u\left(u-v\right)^2+10u^2\left(u-v\right)^2\)

\(=5u\left(u-v\right)^2\left(1+2u\right)\)

13 tháng 8 2021

Trả lời:

a, 3x ( x + 1 )2 - 5x2 ( x + 1 ) + 7 ( x + 1 )

= ( x + 1 )[ 3x ( x + 1 ) - 5x2 + 7 ]

= ( x + 1 )( 3x2 + 3x - 5x2 + 7 )

= ( x + 1 )( - 2x2 + 3x + 7 )

b, ( x + y )( 2x - y ) - ( 3x - y )( y - 2x )

= ( x + y )( 2x - y ) + ( 3x - y )( 2x - y )

= ( 2x - y )( x + y + 3x - y )

= 4x ( 2x - y )

c, 5u ( u - v )2 + 10u2 ( v - u )2 

= 5u ( u - v )2 + 10u2 ( u - v )2 

= 5u ( u - v )2( 1 + 2u )

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

23 tháng 3 2020

Bài2: phân tích đa thức thành nhân tử 

\(a,x^2-y^2-2x+2y\)

\(=\left(x-y\right)\left(y+x-2\right)\)

\(b,x^3-5x^2+x-5\)

\(=x^2\left(x-5\right)+\left(x-5\right)\)

\(=\left(x+x-5\right)\left(x-x-5\right)\)

  \(c,x^2-2xy+y^2-9\)

\(=\left(x^2-y^2\right)-3^2\)

\(=\left(x-y+3\right)\left(x-y-3\right)\)

chúc bạn học tốt !

24 tháng 3 2020

a) A = (3x - 5)(2x + 11) - (2x + 3)(3x + 7)

A = 6x^2 + 33x - 10x - 55 - 6x^2 - 23x - 21

A = -76

b) B = 4x(3x - 2) - 3x(4x + 1)

B = 12x^2 - 8x - 12x^2 - 3x

B = -11x

c) C = (x + 3)(x - 2) - (x - 1)^2

C = x^2 + x - 6 - x^2 + 2x - 1

C = 3x - 7

a: \(=6x^3-12x^2+x^2-2x+x-2\)

\(=\left(x-2\right)\left(6x^2+x+1\right)\)

b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)

\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)

\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)

\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)

c: \(=4x^3+x^2+4x^2+x+4x+1\)

\(=\left(4x+1\right)\left(x^2+x+1\right)\)

19 tháng 10 2020

a) x2 - 3x + 2 = x2 - x - 2x + 2 = x( x - 1 ) - 2( x - 1 ) = ( x - 1 )( x - 2 )

b) 2x2 - x - 6 = 2x2 - 4x + 3x - 6 = 2x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 2x + 3 )

c) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )

d) x2 + 8x + 7 = x2 + x + 7x + 7 = x( x + 1 ) + 7( x + 1 ) = ( x + 1 )( x + 7 )

e) 3x2 + 2x - 5 = 3x2 - 3x + 5x - 5 = 3x( x - 1 ) + 5( x - 1 ) = ( x - 1 )( 3x + 5 )

f) 4x2 - 3x - 1 = 4x2 - 4x + x - 1 = 4x( x - 1 ) + ( x - 1 ) = ( x - 1 )( 4x + 1 )

19 tháng 10 2020

\(x^2-3x+2=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)

b, \(2x^2-x-6=2x^2-4x+3x-6=\left(x-2\right)\left(2x+3\right)\)

c, \(x^2-5x-6=x^2+x-6x-6=\left(x+1\right)\left(x-6\right)\)

d, \(x^2+8x+7=x^2+x+7x+7=\left(x+1\right)\left(x+7\right)\)

e, \(3x^2+2x-5=3x^2-3x+5x-5=\left(x-1\right)\left(3x+5\right)\)

f, \(4x^2-3x-1=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

28 tháng 7 2019

Bài 2:

a) \(x^2+y^2-9-2xy\)

\(=\left(x^2-2xy+y^2\right)-3^2\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

b) \(4x^2-5x-9\)

\(=4x^2+4x-9x-9\)

\(=4x\left(x+1\right)-9\left(x+1\right)\)

\(=\left(x+1\right)\left(4x-9\right)\)

28 tháng 7 2019

\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)

\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)

\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)

\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)

\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)

\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)

\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15