K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a) \(x^2+4xy-21y^2=x^2-3xy+7xy-21y^2=x\left(x-3y\right)+7y\left(x-3y\right)\)\(=\left(x-3y\right)\left(x+7y\right)\)

b)\(5x^2+6xy+y^2\)

=\(5x^2+5xy+xy+y^2\)

=\(5x^{ }\left(x+y\right)+y\left(x+y\right)\)

=\(\left(5x+y\right)\left(x+y\right)\)

29 tháng 7 2018

c) \(x^2-7xy+10y^2\)

\(=\left(x^2-2xy\right)\left(5xy-10y^2\right)\)

\(=x\left(x-2y\right)-5y\left(x-2y\right)\)

\(=\left(x-5y\right)\left(x-2y\right)\)

d)\(x^2+2xy-15y^2\)

\(=x^2+2xy+y^2-16y^2\)

\(\left(x+y\right)^2-\left(4y\right)^2\)

\(=\left(x-3y\right)\left(x+5y\right)\)

4 tháng 11 2017

a) 3x2 +9x - 30

= 3(x2 + 3x -10) = 3[(x2 -2x)+(5x-10)]

= 3(x-2)(x+5)

b) x2 -9x + 18 = (x2 - 3x) - (6x-18)

= (x-3)(x-6)

c) x2 -7x +12 = (x2 -3x)-(4x-12)

= (x-3)(x-4)

d) x2 + 4xy -21y2 = (x2 -3xy)+(7xy - 21y2)

= (x-3y)(x+7y)

e) 5x2 + 6xy +y2

= (5x2 + 5xy)+(xy+y2)

= (x+y)(5x+y)

f) x2 +2xy-15y2 = (x2 - 3xy)+(5xy-15y2)

= (x-3y)(x+5y)

g) x2 -7xy+10y2 = (x2 - 2xy)-(5xy-10y2)

= (x-2y)(x-5y)

h) 4x4 +1 = [(2x2)2 + 4x2 + 1 ] - 4x2

= (2x2 +1)2 -(2x)2

= (2x2 + 1-2x)(2x2 +1+2x)

i) x4 + 324 = [x4 + 36x2 + 182] - 36x2

= (x2 + 18)2 - (6x)2

= (x2 -6x +18)(x2 +6x+18)

4 tháng 11 2017

3x2+9x-30

=3(x2+3x-10)

=3(x2+5x-2x-10)

=3[(x2+5x)-(2x+10)]

=3[x(x+5)+2(x+5)]

=3(x+5)(x+2)

18 tháng 10 2020

a)3x2-5x-2=3x2-6x+x-2

=3x(x-2)+(x-2)

=(3x+1)(x-2)

b)x2-7xy-10y2=x2-2xy-5xy-10y2

=x(x-2y)-5y(x-2y)

=(x-5y)(x-2y)

c)c) x2 +4xy-21y2=x2+7xy-3xy-21y2

=x(x+7y)-3y(x+7y)

=(x-3y)(x+7y)

d) 5x2 +6xy+y2=5x2+5xy+xy+y2

=5x(x+y)+y(x+y)

=(5x+y)(x+y)

e) x2 +2xy-15y2=x2+5xy-3xy-15y2

=x(x+5y)-3y(x+5y)

=(x-3y)(x+5y)

CHÚC BẠN HỌC TỐT

18 tháng 10 2020

câu a làm sao tahc thành-6x+x đc vậy bạn

27 tháng 7 2016

X2+4xy-21y2=(x2+4xy+4y2)-25y2=(x+2)2-(5y)2=(x+2-5y)(x+2+5y)

5x2+6xy+y2=9x2+6xy+y2-4x2=(3x+y)2-4x2=(3x+y+2x)(3x+y-2x)

(x-y)2+4(x-y)-12=(x-y+2)2-16=(x-y+2+4)(x-y+2-4)

x2-7xy+10y2=x2-7xy+\(\frac{49y^2}{4}-\frac{9y^2}{4}\)\(\left(x-\frac{7}{2}\right)^2-\left(\frac{3y}{2}\right)^2\)=\(\left(x-\frac{7}{2}-\frac{3y}{2}\right)\left(x-\frac{7}{2}+\frac{3y}{2}\right)\)

x2+2xy-15y2=(x+y)2-16y2=(x+y-4y)(x+y+4y

12 tháng 9 2020

a) x2 - y2 + 4x + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

b) x2 - 2xy + y2 - 1

= ( x2 - 2xy + y2 ) - 1

= ( x - y )2 - 12

= ( x - y - 1 )( x - y + 1 )

c) x2 - 2xy + y2 - 4

= ( x2 - 2xy + y2 ) - 4

= ( x - y )2 - 22

= ( x - y - 2 )( x - y + 2 )

d) x2 - 2xy + y2 - z2

= ( x2 - 2xy + y2 ) - z2

= ( x - y )2 - z2

= ( x - y - z )( x - y + z )

e) 25 - x2 + 4xy - 4y2

= 25 - ( x2 - 4xy + 4y2 )

= 52 - ( x - 2y )2

= ( 5 - x + 2y )( 5 + x - 2y )

f) x2 + y2 - 2xy - 4z2

= ( x2 - 2xy + y2 ) - 4z2

= ( x - y )2 - ( 2z )2

= ( x - y - 2z )( x - y + 2z )

22 tháng 9 2020

a) 4x2 - 5xy + y2 = 4x2 - 4xy - xy + y2 = 4x( x - y ) - y( x - y ) = ( x - y )( 4x - y )

b) x2 - 4xy + 3y2 = x2 - xy - 3xy + 3y2 = x( x - y ) - 3y( x - y ) = ( x - y )( x - 3y )

c) 9x2 + 6xy - 8y2 = 9x2 - 6xy + 12xy - 8y2 = 9x( x - 2/3y ) + 12y( x - 2/3y ) = ( x - 2/3y )( 9x + 12y )

d) 2x2 + 3xy - 5y2 = 2x2 - 2xy + 5xy - 5y2 = 2x( x - y ) + 5y( x - y ) = ( x - y )( 2x + 5y )

e) x2 - 35y2 - 2xy = x2 + 5xy - 7xy - 35y2 = x( x + 5y ) - 7y( x + 5y ) = ( x + 5y )( x - 7y )

f) 2x2 + 10xy + 8y2 = 2( x2 + 5xy + 4y2 ) = 2( x2 + xy + 4xy + 4y2 ) = 2[ x( x + y ) + 4y( x + y ) ] = 2( x + y )( x + 4y )

g) x2 - 10xy + 16y2 = x2 - 2xy - 8xy + 16y2 = x( x - 2y ) - 8y( x - 2y ) = ( x - 2y )( x - 8y )

h) 4x2 + 4xy - 15y2 = 4x2 - 6xy + 10xy - 15y2 = 4x( x - 3/2y ) + 10y( x - 2/3y ) = ( x - 2/3y )( 4x + 10y )

i) -7xy + 3x2 + 2y2 = 3x2 - xy - 6xy + 2y2 = 3x( x - 1/3y ) - 6y( x - 1/3y ) = ( x - 1/3y )( 3x - 6y )

j) 56y2 + 4x2 - 36xy = 4( x2 - 9xy + 14y2 ) = 4( x2 - 2xy - 7xy + 14y2 ) = 4[ x( x - 2y ) - 7y( x - 2y ) ] = 4( x - 2y )( x - 7y )

9 tháng 7 2017

Ta có : 5x2 + 6xy + y2

= 5x2 + 5xy + xy + y2

= 5x(x + y) + y(x + y)

= (5x + y)(x + y)

8 tháng 6 2017

a) \(=x^2+2xy+y^2-x^2+y^2=2xy+2y^2=2y\left(x+y\right)\)

b) \(=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

c) \(=3\left[\left(x^2+2xy+y^2\right)-z^2\right]=3\left[\left(x+y\right)^2-z^2\right]=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

e) \(=\left(x-3\right)\left(x^2+3x+9\right)-2x\left(x-3\right)=\left(x-3\right)\left(x^2+x+9\right)\)

f) \(=\left(x+5\right)\left(x^2-5x+25\right)-x\left(x+5\right)=\left(x+5\right)\left(x^2-6x+25\right)\)

8 tháng 6 2017

a) \(\left(x+y\right)^2-\left(x^2-y^2\right)\)

\(=x^2+2xy+y^2-x^2+y^2\)

\(=2y^2+2xy\)

\(=2y\left(x+y\right)\)

c) \(3x^2+6xy+3y^2-3z^2\)

\(=3\left(x^2+2xy+y^2-x^2\right)\)

\(=3\left[\left(x+y\right)^2-z^2\right]\)

\(=3\left(x+y+z\right)\left(x+y-z\right)\)

d) \(\left(2xy+1\right)^2-\left(2x+y\right)^2\)

\(=\left(2xy+1+2x+y\right)\left(2xy+1-2x-y\right)\)

\(=\left[\left(2xy+2x\right)+\left(y+1\right)\right]\left[\left(2xy-2x\right)-\left(y-1\right)\right]\)

\(=\left[2x\left(y+1\right)+\left(y+1\right)\right]\left[2x\left(y-1\right)-\left(y-1\right)\right]\)

\(=\left(2x+1\right)\left(y+1\right)\left(2x-1\right)\left(y-1\right)\)

\(=\left(4x^2-1\right)\left(y^2-1\right)\)

30 tháng 4 2017

 1)    \(25x^4-10x^2y+y^2\)

\(\Leftrightarrow\left(5x^2\right)^2+2\cdot\left(5x^2\right)\cdot y+y^2\)

\(\Leftrightarrow\left(5x^2+y\right)^2\)

 2)   \(x^4+2x^3-4x-4\)

\(\Leftrightarrow\left(x^4-4\right)+\left(2x^3-4x\right)\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

 \(\Leftrightarrow\left(x^2-2\right)\left(x^2+2+2x\right)\)

 3)  \(x^4+x^2+1\)

\(\Leftrightarrow x^4+x^2-x+x+1\)

 \(\Leftrightarrow\left(x^4-x\right)+\left(x^2+x+1\right)\)

\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2-x+1\right)\)

 4)    \(x^3-5x^2-14x\)\(\Leftrightarrow x^3-7x^2+2x^2-14x\)

\(\Leftrightarrow x^2\left(x-7\right)+2x\left(x-7\right)\)\(\Leftrightarrow x\left(x+2\right)\left(x-7\right)\)

 5)  \(x^2yz+5xyz-14yz\)\(\Leftrightarrow yz\left(x^2+5x-14\right)\)

\(\Leftrightarrow yz\left(x^2+7x-2x-14\right)\)

\(\Leftrightarrow yz\left[x\left(x+7\right)-2\left(x+7\right)\right]\) 

\(\Leftrightarrow yz\left(x+7\right)\left(x-2\right)\)

1 tháng 5 2017

Cảm ơn bạn Nguyễn Kim Thương :))