Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ x4 +5x3 +10x-4
=(x4- 4)+(5x3 + 10x)
=(x2+2) (x2-2) + 5x(x2 +2 )
=(x2+2)(x2 -2 +5x)
b/x5 - x4 +x3 -x2 +x-1
=x4(x-1)+x3(x-1)+(x-1)
=(x-1)(x4+x3+1)
x3-5x2+x-5=0
=> x2.(x-5)+(x-5)=0
=> (x-5).(x2+1)=0
=> x-5=0 hoặc x2+1=0
=> x=5 hoặc x2=-1 (vô lí)
Vậy x=5.
x4-2x3+10x2-20x=0
=> x3.(x-2)+10x(x-2)=0
=> (x-2).(x3+10x)=0
=> x.(x-2).(x2+10)=0
=> x=0 hoặc x-2=0 hoặc x2+10=0
=> x=0 hoặc x=2 hoặc x2=-10 (vô lí)
Vậy x=0 hoặc x=2.
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
x^4+ 2x^2 + 5x^3 + 10x- 2x^2 - 4
= x^2. [x^2+ 2 ] +5.x[x^2+2] - 2.[x^2+2]
= [x^2+5x-2] . [x^2+2]